Смекни!
smekni.com

Оптимизация антенн с использованием гибрида генетического алгоритма (стр. 3 из 3)

Таким образом, пришлось прибегнуть к выполнению оптимизации ГА-АКП. Этап ГА, где использовались только грубые модели решетки, был выполнен с помощью зарекомендовавшего себя алгоритма µГА (Кришнакумар 1989), при использовании совокупности, равной 5 элементам и смене совокупности при сходимости в 80%. В качестве операторов ГА использовались турнирный отбор и двухэлементное скрещивание (Бэк и др. 1997). Получаемые результаты имели формат с фиксированной точкой, в котором всего было 12 целых разрядов; для представления длины - от 3 до 3,25 см, а для представления расстояния точек возбуждения до центра излучателя - от 0,33 до 0,60 см. Значения, допустимые для длин излучателей в процессе ГА, были установлены с помощью аппроксимирующих уравнений, используемых для расчета частоты резонанса прямоугольной микрополосковой излучательной антенны, расположенной на бесконечном (заземленном?) экране; значения частоты лежали в интервале от 4,4 до 4,8 ГГц, что соответствовало значениям длин в 3,25 и 3 см, соответственно. Функция пригодности (соответствия) F была выбрана так, чтобы при 4,5 ГГц минимизировать максимальное значение модуля (амплитуды) входного коэффициента отражения для любой антенны решетки (F = max{|S11|i}; i = 1,...,6). На Рисунке 3 показана амплитуда входного коэффициента отражения каждого антенного элемента для такого грубого решения; у каждого излучателя здесь разные частоты резонанса, но все они находятся около желаемого рабочего значения в 4,5 Ггц.

Тем не менее, моделирование, выполненное на точной модели той же антенны, показало смещение спектра приблизительно в 130 МГц (см. Рисунок 4). Для исправления этого эффекта была проведена процедура АКП. Точное пространство определили с помощью лишь двух параметров хf, каждый из которых масштабировал соответственно значения длин и расстояний от точек возбуждения, полученных при оптимальном грубом решении. Как указано в (Бакр 2000), схождение модели лучше всего достигается при использовании в анализе нескольких частотных точек. В данном случае в интервале от 4,25 до 4,75 ГГц распределили 11 частотных точек. Фазу извлечения параметров выполнили с помощью агрессивного подхода картирования пространства (Бандлер и др. 1995), а также принятия для всех излучателей, расположенных вдоль частотной кривой нашего анализа - в качестве меры подобия точной и грубой моделей - среднеквадратической ошибки от расстояния между их соответствующими действительными частями входного полного сопротивления. Другими важными моментами выбора на этапе АКП были критерии останова процесса, которые были установлены на 10-4, а также числовая оценка аналитического определителя Якоби, выполняемая с помощью разностной аппроксимации вперед. Основной момент при достижении быстрой сходимости заключался в оценке подобия между выходами из грубой и точной моделей, когда в качестве измерительной функции использовали не амплитуду входного коэффициента отражения, а действительную часть входного полного сопротивления. Это было обусловлено тем, что большая монотонность действительной части входного полного сопротивления позволяет получить лучшие значения разностной аппроксимации вперед. Проведя всего три точных эмуляции и 45 грубых, алгоритм достиг окончательного решения. На Рисунке 5 показано эффективное корректирование рабочей точки к 4,5 ГГц.

Наконец, была выполнена оценка времени, сэкономленного за счет использования метода ГА-АКП по сравнению с методом ГА, использующим только точные эмуляции. Зная, что в данном случае расход времени на работу с точной моделью в 6,5 раз больше на одну частоту, чем при работе с грубой моделью, и что каждая точная или грубая эмуляция, выполненная на этапе АКП, решала 11 частотных точек, определили, что применение гибридного метода позволило выполнить оптимизацию примерно в 5,25 раз быстрее. Следовательно, пока показатель времени зависит от разницы между временем анализа точной и грубой моделей, для достижения большей экономии разработчику придется искать быстрее выполнимые грубые модели. В любом случае этот процесс следует выполнять очень тщательно, поскольку этап АКП эффективен только тогда, когда выход из грубой модели подобен выходу из точной.


Заключение

В данном сообщении предложена эффективная схема оптимизации антенн. Она заключается в применении вслед за основанной на ГА оптимизацией, использующей при моделировании характеристики антенны грубую модель, дополнительной процедуры АКП. Этот последний этап увеличивает точность оптимизированных результатов, а весь подход в целом, как показано, имеет преимущество с точки зрения вычислительных затрат по сравнению с применением ГА только к эмуляции точной модели. Планируются дальнейшие исследования для сравнения эффективности метода ГА-АКП с эффективностью других гибридных методов, сочетающих методы локальной оптимизации с АКП.

Список литературы:

1. Антенны и устройства СВЧ. Расчет и проектирование антенных решеток и их излучающих элементов / Под ред. Д.И. Воскресенского. М.: Сов. радио, 1972.

2. Драбкин А.Л., Зузенко В.Л., Кислов А.Г. Антенно-фидерные устройства. М.: Сов. радио, 1974.

3. Антенны и устройства СВЧ: Методические указания к лабораторным работам. Часть 1 / Под ред. А.В. Рубцова. Рязань, 2006.

4. Антенны и устройства СВЧ. Проектирование фазированных антенных решеток / Под ред.Д.И. Воскресенского. М.: Радио и связь, 1994.