Смекни!
smekni.com

Системы случайных величин (стр. 3 из 3)

На выходе сумматора сигнал образуется таким образом:

. Возведение в квадрат является нелинейной операцией, но она выполняется уже после максимизации отношения сигнал/шум на выходах линейных согласованных фильтров и влияет незначительно.

На выходах квадратурных согласованных фильтров определяются квадраты составляющих комплексной огибающей (синусной и косинусной) и складываются в сумматоре. Полученный квадрат корреляционного интеграла инвариантен к начальной фазе входного сигнала (определяется квадрат длины вектора в комплексной системе координат). Однако наличие двух каналов приводит к потерям в отношении сигнал/шум в два раза по мощности (или - 3 дБ), поскольку шум в сумматоре удваивается по дисперсии.

Таким образом, применение синтезированной структуры приводит к независимости от начальной фазы, но приводит к усложнению согласованного фильтра (надо иметь два согласованных фильтра).

8. Двумерный нормальный закон плотности вероятности

Двумерная нормальная плотность вероятности задается формулой

,

в которой

и
- математические ожидания СВ Xи Y;
и
- среднеквадратические отклонения этих СВ; R - коэффициент корреляции.

Заметим, что кривые равной плотности вероятности имеют вид эллипсов:

.

На этом основании эллипсы имеют название эллипсов равных вероятностей или эллипсов рассеивания. В зависимости от знака величины Rэллипсы имеют различную форму и ориентацию на плоскости x0y. При этом главные оси эллипса пропорциональны главным среднеквадратическим отклонениям

и
, которые связаны со среднеквадратическими отклонениями следующими формулами:

;

,

где a - угол между одной из главных осей эллипса и осью 0x. Если главные оси эллипса совпадают с осями координат, то можно утверждать, что СВ Xи Yявляются некоррелированными, а главные среднеквадратические отклонения равны среднеквадратическим отклонениям. Если же при этом дисперсии

и
одинаковы, то эллипсы рассеивания превращаются в окружности.

Нормальное распределение имеет исключительную роль в статистической радиотехнике. Почти все шумы радиоприемных устройств подчинены нормальному закону (их мгновенные значения). Универсальность нормального закона объясняется тем, что каждая СВ, являющаяся суммой очень большого числа независимых СВ, каждая из которых оказывает незначительное влияние на сумму, распределена по нормальному закону, причем независимо от вида распределения каждого слагаемого (центральная предельная теорема теории вероятности) (рис.1).

Рис.1

Поскольку в выражение для нормальной плотности вероятности входит только R, то для нормальных СВ некоррелированность одновременно означает и их независимость. Нетрудно доказать это утверждение, если в выражение для нормальной плотности вероятности подставить R= 0. При этом выражение для двумерной нормальной плотности вероятности преобразуется в произведение одномерных нормальных плотностей вероятностей.

Библиографический список

1. Математические основы современной радиоэлектроники [Текст] / И.А. Большаков [и др.]. - М.: Сов. радио, 2009. - 208 с.

2. Манжос, В.Н. Теория и техника обработки радиолокационной информации на фоне помех [Текст] / Я.Д. Ширман, В.Н. Манжос. - М.: Радио и связь, 2011. - 416 с.

3. Жовинский, В.Н. Инженерный экспресс-анализ случайных процессов [Текст] / А.Н. Жовинский, В.Н. Жовинский. - М.: Энергия, 2009. - 112 с.

4. Федосов, В.П. Статистическая радиотехника [Текст]: конспект лекций / В.П. Федосов, В.П. Рыжов. - Таганрог: Изд-во ТРТИ, 2008. - 76 с.

5. Гнеденко, Б.Н. Курс теории вероятности [Текст] / Б.Н. Гнеденко. - М.: Физматгиз, 2011. - 203 с.