Для пояснения причины уменьшения динамической ошибки с ростом коэффициента передачи К обратимся к рис. 13, на котором представлены энергетический спектр процесса xз(t) (пунктирная линия) и АЧХ замкнутой системы при различных значениях КТф (сплошные линии). Видим, что чем больше КТф, тем меньше отличие коэффициента передачи замкнутой системы от 1 в области частот, занятых спектром задающего воздействия.
Дисперсия ошибки по возмущению вычисляется по формуле:
.
Так как спектральная плотность возмущающего воздействия в r раз меньше спектральной плотности Sn0, то
и
. (16)Дисперсия ошибки по возмущению увеличивается с ростом КТф, так как увеличивается площадь под АЧХ замкнутой системы. Зависимость дисперсии суммарной ошибки s2 = s2дин + s2воз от КТф показана на рис. 14 для различных значений r. Минимум достигается при оптимальном значении коэффициента передачи. Следует отметить, что оптимум не очень критичен и при двукратном отличии коэффициента передачи от оптимального дисперсия ошибки увеличивается на 15 – 20 %.
Рис.
Рассмотрим теперь, к какому увеличению дисперсии приведет отличие структуры системы от оптимальной. Допустим, что система первого порядка (рис. 32) осуществляет слежение за процессом xз(t), образованным из белого шума формирующим фильтром второго порядка с пере-даточной функцией Кф(р) = =1/(1 + рТф1)2. Подберем Тф1 так, чтобы площади под |Кф(jw)½2 для однозвенного и двухзвенного фильтров были одинаковыми. Тогда будет соблюдаться равенство дисперсий выходных процессов обоих фильтров при одинаковой спектральной плотности входного белого шума. Это условие выполняется при Тф1 = Тф/2. На рис. 15 представлены АЧХ фильтров: однозвенного (сплошная линия) и двухзвенного (пунктирная линия). Из-за отличия спектров задающего воздействия изменится динамическая ошибка. Дисперсия динамической ошибки станет равной:
.Дисперсия ошибки по возмущению останется прежней, так как частотная характеристика замкнутой системы не изменилась. На рис. 36 показано, во сколько раз увеличивается минимальная дисперсия суммарной ошибки в системе с неоптимальной структурой по сравнению с дисперсией ошибки в оптимальной системе в зависимости от r.