Смекни!
smekni.com

Линейные преобразования случайных сигналов (стр. 3 из 4)

В частотной области

Gy(

) = Gx(
)K2(
), тогда

y2 = (2p)-1
Gx(
) K2(
)d
.

Во временной области By(

) = Bx(
Bh(
). Полагая
= 0 и учитывая, что Bh(-
) = Bh(
), можно записать

sy2 =

Bx(

) Bh(
)d
.

2. Нормализация случайных сигналов в узкополосных электрических цепях

Допустим есть устройство, имеющее структурную схему, показанную на рис. 12.

Рис. 12

Если СП с нормальным законом подвергнуть какому-либо нелинейному преобразованию (например, двухстороннему ограничению), то его закон распределения изменится (рис. 13).

Рис. 13


На выходе узкополосной цепи опять получим сигнал с нормальным распределением, и этот закон тем ближе будет к нормальному, чем ýже полоса пропускания используемой линейной цепи.

3. Исследование на LabVIEW линейных преобразований случайных процессов и явления нормализации

Исследование влияния полосы фильтра на вид и параметры реализации случайного процесса

Количество реализаций: 200.

Тип фильтра: НЧ Баттерворта.

Порядок фильтра НЧ: 50.

Выполнение:

а) Частота среза фильтра НЧ: 3 МГц

Полученные данные показаны на рис. 1

Рис. 14

Погрешность оценки спектральной плотности мощности составляет:

мВ2/МГц (оценка методом экспресс-анализа).

Дисперсия процесса может быть определена по площади под кривой спектральной плотности мощности, которая приблизительно равна 3 мВ2.

Среднеквадратическое отклонение оценки составит

мВ; значение практически соответствует полученным данным (1,7359 мВ).

б) Частота среза фильтра НЧ: 2 МГц.

Полученные данные показаны на рис. 15.

Погрешность оценки спектральной плотности мощности процесса на выходе фильтра составляет:

мВ2/МГц.

Среднеквадратическое отклонение процесса составит

мВ – значение практически соответствует полученным данным.

Рис. 15

в) Частота среза фильтра НЧ: 4 МГц.

Полученные данные показаны на рис. 16.


Рис. 16

Погрешность фильтра составляет:

мВ2/МГц.

Среднеквадратическое отклонение, вычисленное по площади, ограниченной усредненной спектральной плотности мощности, составит

мВ; значение практически соответствует полученным данным.

Выводы. При увеличении полосы ФНЧ корреляционная функция уменьшается (из-за уменьшения дисперсии), при этом главный лепесток расширяется и уменьшается плотность распределения вероятности. Вид корреляционной функции соответствует кривой

. Скорость изменения мгновенных значений в реализации увеличивается с ростом верхней граничной частоты фильтра. Увеличивается и размах реализации. С увеличением дисперсии уменьшается максимальное значение плотности вероятности.

Влияние полосы П полосового фильтра на вид и параметры реализации входного случайного процесса

Количество реализаций: 200.

Частота среза ФНЧ: 3 МГц.

Тип фильтра: НЧ Баттерворта.

Порядок фильтра НЧ: 50.

а) Нижняя частота среза: 1,2 МГц.

Верхняя частота среза: 1,8 МГЦ.

Центральная частота: 1,5 МГц.

Полученные результаты показаны на рис. 17.

Рис. 17

Погрешность оценки спектральной плотности СП на выходе фильтра составляет:

мВ2/МГц.

Среднеквадратическое отклонение, вычисленное по площади ограниченной усредненной спектральной плотности мощности, составит

, мВ; значение практически соответствует полученным ранее результатам.

б) Нижняя частота среза: 1,0 МГц;

Верхняя частота среза: 2,0 МГЦ;

Центральная частота: 1,5 МГц.

Полученные результаты показаны на рис. 18.


Рис. 18

Погрешность фильтра составляет:

мВ2/МГц.

Среднеквадратическое отклонение, вычисленное по площади, ограниченной усредненной спектральной плотности мощности, составит 1 мВ; значение практически соответствует полученным результатам.

в) Нижняя частота среза: 0,5 МГц.

Верхняя частота среза: 2,5 МГЦ.

Центральная частота: 1,5 МГц.

Полученные результаты показаны на рис. 19.


Рис. 19

Погрешность фильтра составляет:

мВ2/МГц.

Среднеквадратическое отклонение, вычисленное по площади, ограниченной усредненной спектральной плотности мощности, составит

мВ; значение практически соответствует полученным данным.

Выводы. При увеличении полосы П полосового фильтра боковые лепестки корреляционной функции уменьшаются как по амплитуде, так и по количеству, при этом максимальное значение плотности вероятности уменьшается, а площадь плотности вероятности огибающей узкополосного шума увеличивается. В реализации с ростом полосы пропускания фильтра увеличивается скорость изменения огибающей и возрастает размах реализации. Растет максимальное значение корреляционной функции при нулевом значении ее аргумента.

Исследование нормализации случайного процесса

а) Полоса пропускания: 1 МГц. Центральная полоса: 1,5 МГц.

Полученные результаты показаны на рис. 20.

Рис. 20

б) Полоса пропускания: 0,75 МГц.

Центральная полоса: 1,5 МГц.

Полученные результаты показаны на рис. 21.

Рис. 21

в) Полоса пропускания: 0,5 МГц.

Центральная полоса: 1,5 МГц.

Полученные данные показаны на рис. 22.

Рис. 22

г) Полоса пропускания: 0,5 МГц.

Центральная полоса: 1,5 МГц.

Полученные данные показаны на рис. 23.

Рис. 23


д) Полоса пропускания: 0,125 МГц. Центральная полоса: 1,5 МГц.

Полученные данные показаны на рис. 2

Рис. 24


Для наглядности данные сведены в табл. 1, а график зависимости коэффициента эксцесса от полосы пропускания полосового фильтра показан на рис. 25.

Таблица 1Результаты исследований

Полоса пропускания, МГц Коэффициент эксцесса
1,0 -1,006
0,75 -0,8639
0,5 -0,5004
0,25 -0,3113
0,125 -0,06627

Рис. 25

Выводы

В спектральной плотности мощности СН на выходе нелинейного элемента наблюдаются отличающиеся от нуля значения при частотах

и 3
. При уменьшении полосы пропускания плотность вероятности стремится к нормальной, а коэффициент эксцесса уменьшается (возрастает острота вершины плотности вероятности), а значит, плотность вероятности стремится к нормальной, что соответствует центральной предельной теореме теории вероятности. При увеличении полосы пропускания нормализующего фильтра плотность вероятности стремится к двум d-функциям.