Смекни!
smekni.com

Линейные преобразования случайных сигналов (стр. 1 из 4)

При анализе прохождения стационарного СП через линейные электрические цепи (рис. 1) будем полагать, что режим цепи установившийся, т.е. после подачи на вход цепи сигнала все переходные процессы, связанные с включением, закончились. Тогда и выходной СП будет стационарным. Рассматриваемая задача будет состоять в том, чтобы по заданной корреляционной функции входного сигнала или его спектральной плотности мощности определить B(t) или G(w) выходного сигнала.

Рис. 1

Сначала рассмотрим решение этой задачи в частотной области. Входной СП задан своей спектральной плотностью мощности Gх(

). Выходная спектральная плотность мощности Gy(w) определяется по формуле

Gy(

) = Gх(
)K2(
), (1)

где K2(

) - квадрат модуля комплексной передаточной функции цепи. Возведение в квадрат модуля основано на том, что искомая характеристика является действительной функцией частоты и энергетической характеристикой выходного процесса.

Для определения связи между корреляционными функциями необходимо применить к обеим частям равенства (1) обратное преобразование Фурье:

Bx(

) = F-1[Gx(
)]; F-1[K2(
)] = Bh(
)

- корреляционная функция импульсной характеристики исследуемой цепи:

Bh(

)=
h
(t)h(t -
)dt.

Таким образом, корреляционная функция выходного СП есть

By(

) = Bx(
) Bh(
) =
Bx(t) Bh(t -t)dt.

ПРИМЕР 1 прохождения стационарного случайного широкополосного сигнала через RC-цепь (фильтр нижних частот), представленную схемой на рис. 2.

Широкополосность понимается так, что энергетическая ширина спектра входного СП намного больше полосы пропускания цепи (рис. 3). При таком соотношении между формой K2(

) и Gx(
) можно не рассматривать ход характеристики Gx(
) в области верхних частот.

Рис. 2

Учитывая, что в полосе частот, где K2(w) существенно отличается от нуля, спектральная плотность мощности входного сигнала равномерна, можно без существенной погрешности входной сигнал аппроксимировать белым шумом, т.е. положить Gx(

) = G0 = const. Такое предположение существенно упрощает анализ. Тогда Gy(
) = G0K2(
)

Для заданной цепи

K2(

) = 1/[1 + (
RC)2], тогда Gy(
) = G0/[1 + (
RC)2].

Рис. 3

Определим энергетическую ширину спектра выходного сигнала. Мощность выходного СП

Py = sy2 = (2p)-1

Gy(

)d
= G0/(2RC), тогда

D

э = (G0)-1
Gy(
)d
= p/(2RC).

На рис. 4 показаны корреляционная функция выходного СП и его спектральная плотность мощности.

Спектральная плотность мощности по форме повторяет квадрат модуля комплексной передаточной функции цепи. Максимальное значение Gy(

) равно G0. Максимальное значение корреляционной функции выходного СП (его дисперсия) равна G0/(2RC). Нетрудно определить площадь, ограниченную корреляционной функцией. Она равна значению спектральной плотности мощности при нулевой частоте, т.е. G0:

.

Рис. 4

Энергетической (шумовой) полосой пропускания электрической цепи называется полоса частот, численно совпадающая с энергетической шириной спектральной плотности мощности сигнала на выходе цепи при воздействии на вход цепи белого шума. В заданной случае D

э = p/(2RC). Сравним ее с полосой пропускания
гр этой же цепи на уровне 0,707. Так как
гр = 1/(RC), то Dwэ = p/2
гр, то есть D
э в p/2 раз больше
гр.

Определим корреляционную функцию сигнала на выходе RC-цепи при воздействии на ее вход белого шума.

Так как выходная спектральная плотность мощности уже определена, то можно вычислить искомую функцию обратным преобразованием Фурье. Но в рассматриваемом случае проще анализ выполнить во временной области, то есть By(

) = Bx(
)Bh(
), но так как Bx(
) = W0d(
), то By(
) = W0Bh(
) (учитывая фильтрующее свойство дельта-функции).

Таким образом, при воздействии на вход цепи белого шума, корреляционная функция выходного сигнала совпадает с точностью до постоянного множителя с корреляционной функцией импульсной характеристики рассматриваемой цепи. Так как


h(t) = 1/(RC) exp[-t/(RC)], t³ 0, то

Bh(

) =
h(t)h(t-
)dt = 1/(2RC)exp[-|
|/(RC)], -¥ <
< ¥.

На рис. 5 представлены корреляционные функции (рис. 5а) и спектральные плотности мощности (рис. 5б) для двух значений постоянной времени заданной цепи (RC)1 < (RC)2. Дисперсия выходного СП

y2 = By(0) = = G0/(2RC).

Площадь под кривой By(

) равна значению спектральной плотности мощности при
= 0, есть G0. Из сравнения графиков на рис. 5 следует, что с уменьшением полосы пропускания цепи начальное (максимальное) значение корреляционной функции By(0) уменьшается, что связано с уменьшением мощности выходного сигнала, и корреляционная функция изменяется медленнее с увеличением RC заданной цепи.