Смекни!
smekni.com

Импульсные и цифровые системы авторегулирования (стр. 3 из 3)

Рис. 14

Когда шаг квантования мал по сравнению с квантуемым процессом, шум квантования приобретает случайный характер и практически теряет связь с видом квантуемого процесса, поэтому его считают стационарным случайным процессом, равномерно распределенным в интервале (-h/2,h/2). Дисперсия этого шума:

.

Более того, значения шума квантования, отстоящие друг от друга на интервал дискретизации, слабо коррелированы, и его считают белым. Тогда ошибку, вызванную шумом квантования, можно рассчитать по импульсной характеристике gз[n]:

или по частотной характеристике замкнутой системы:

либо

,

где

,
,

l - абсолютная псевдочастота.

Рассчитанное по любой из этих формул значение дисперсии:

. (25)

Исследование системы проводится на модели, изображенной на рис.16. За основу принята импульсная модель с АИМ-II, исследованная в лабораторной работе № 7, в которую введен квантователь по уровню импульсного сигнала рассогласования. Характеристика квантователя задается значением процессов, подаваемых на сумматоры S1 (до квантователя) и S2 (после квантователя). Если выход источника постоянного воздействия, равного h/2, подсоединен к входу S1, то реализуется характеристика, изображенная на рис. 10,а, если – к входу S2, то реализуется характеристика, изображенная на рис. 10,б. Если входы обоих сумматоров свободны, то реализуется характеристика, изображенная на рис. 10,в. Заданный для цифровой системы коэффициент передачи К равен произведению коэффициента передачи интегратора Кинт на длительность импульса t. Для используемой модели t = 0,1 с, поэтому Кинт = К/t = 10К. Интервал дискретизации Т = 1 с.

Рис. 16


Заключение

Формирование систем автоматического регулирования, как правило, выполняют на основе аналитических методов анализа или синтеза. На этом этапе проектирования систем регулирования на основе принятые допущений составляют математическую модель системы и выбирают предварительную ее структуру. В зависимости от типа модели (линейная или нелинейная) выбирают метод расчета для определения параметров, обеспечивающих заданные показатели устойчивости, точности и качества. После этого уточняют математическую модель и с использованием средств математического моделирования определяют динамические процессы в системе. При действии различных входных сигналов снимают частотные характеристики и сравнивают с расчетными. Затем окончательно устанавливают запасы устойчивости системы по фазе и модулю и находят основные показатели качества.

Далее, задавая на модель типовые управляющие воздействия; снимают характеристики точности. На основании математического моделирования составляют технические требования на аппаратуру системы. Из изготовленной аппаратуры собирают регулятор и передают его на полунатурное моделирование, при котором объект регулирования набирают в виде математической модели.

Развитие теории автоматического регулирования на основе уравнений состояния и z-преобразований, принципа максимума и метода динамического программирования совершенствует методику проектирования систем регулирования и позволяет создавать высокоэффективные автоматические системы для самых различных отраслей народного хозяйства. Полученные таким образом системы автоматического регулирования обеспечивают высокое качество выпускаемой продукции, снижают ее себестоимость и увеличивают производительность труда.


Список литературы

1. Коновалов Г.Ф. Радиоавтоматика: Учебник для вузов. М.: Радиотехника, 2003. 288 с.

2. Первачев С.В. Радиоавтоматика: Учебник для вузов. М.: Радио и связь, 1982. 296 с.

3. Радиоавтоматика: Учебное пособие / Под ред. В.А. Бесекерского. М.: Высшая школа, 1985.271 с.

4. Системы радиоавтоматики и их модели: Учеб. пособие / Ю.Н.Гришаев; Рязан. радиотехн. институт. Рязань, 1977. 46 с.

5. Шахгильдян В.В., Ляховкин А.А. Системы фазовой автоподстройки частоты. М.: Связь, 1972.448 с.

6. Синтез частотных характеристик линейных систем автоматического регулирования: Метод. указания / Рязан. гос. Радиотехн. акад.; Сост. Ю.Н.Гришаев. Рязань, 2000. 12 с.