2. структурная схема устройства, реализующая метод кусочного размножения оценок
Следует отметить, что предлагаемый метод обработки является симбиозом метода скользящего среднего и метода размножения оценок [3]. Используя выводы, при получении оценки полезного сигнала методом скользящего среднего, структурная схема устройства, его реализующая, показана на рис. 6. Устройство содержит буферный блок, блок аппроксимации, блок оценки и блок управления. Устройство, реализующее метод скользящего среднего, реализуется последовательной схемой. Исходная реализация поступает в буферный блок, где записываются первые
значения . С буферного блока последние значения передаются в блок аппроксимации, где осуществляется их аппроксимация полиномиальной функцией, используя метод наименьших квадратов. Аппроксимирующей функцией является полином степени пространства (2). В блоке оценок осуществляется вычисление оценки полезного сигнала путем вычисления значения аппроксимирующего полинома в центральной точке интервала аппроксимации, что соответствует процедуре нахождения оценки методом простого скользящего среднего. Результирующая оценка поступает на выход устройства (рис. 6).Рис. 6. Структурная схема устройства, реализующая метод скользящего среднего
С помощью блока управления задаются параметры обработки: длина скользящего интервала
(ширина скользящего окна) и степень аппроксимирующего полинома . В случае, когда или , оценка на выходе устройства эквивалентна использованию метода простого скользящего среднего, а при или – методу взвешенного скользящего среднего.На рис. 7 представлена структурная схема устройства, реализующего метод кусочного размножения оценок (10). Устройство представляет собой набор из
каналов, каждый из которых содержит в себе блок задержки, буферный блок, блок аппроксимации, сумматор. Параметры обработки задаются с помощью блока управления. Значения исходной реализации через блоки задержки записываются в буферные блоки каждого из каналов.Рис. 7. Структурная схема устройства, реализующего метод кусочного размножения оценок
Все блоки задержки устройства являются идентичными и позволяют создавать задержку на один такт работы устройства. В каждом канале содержатся значения исходной реализации в m отсчетов, сдвинутые относительно друг друга на один такт, что соответствует используемому способу разбиения исходной реализации (рис. 1). Значения обрабатываемой реализации с буферных блоков поступают в блоки аппроксимации, где осуществляется их аппроксимация с помощью метода наименьших квадратов, используя полиномиальную аппроксимирующую функцию степени
(рис. 7). В блоках аппроксимации вычисляются значения аппроксимирующих функции и производится их взвешивание (7). Значения аппроксимирующих функций через блоки задержки поступают на сумматоры (рис. 7). На выходе устройства формируется оценка полезного сигнала. С помощью блока управления определяется число каналов обработки; размер каждого буфера канала, который равен длине интервала разбиения реализации ; степень аппроксимирующего полинома в блоках аппроксимации. В случае , и – оценки на выходе устройства описываются выражениями (11), (12) и (13) соответственно. Структурная схема устройства, представленная на рис. 1, является одним из прототипов устройства, реализующего метод кусочного размножения оценок (рис. 7). В отличие от метода размножения оценок, интервал разбиения исходной реализации фиксирован, а оценку полезного сигнала можно получать по мере поступления данных. Структурная схема устройства, представленная на рис. 6, также является прототипом устройства, реализующего метод кусочного размножения оценок (рис. 7), но при всей схожести используется оценка полезного сигнала, полученного на всем интервале (10), в отличие от метода скользящего среднего, где она вычисляется только в его середине.Приведенная структурная схема реализации устройства на основе метода кусочного размножения оценок является одним из вариантов. В каждом конкретном случае и в зависимости от используемого оборудования структурная схема может модифицироваться. Возможность распараллеливания вычислений при реализации метода кусочного размножения оценок позволяет реализовывать его на базе многопроцессорных систем.
В результате при реализации предлагаемого метода кусочного размножения оценок полезного сигнала устройство представляет собой дискретный фильтр, а использование непосредственного вычисления коэффициентов аппроксимирующего полинома и получение оценок на каждом интервале разбиения, с последующим усреднением их по полученным множествам, с вычислительной точки зрения не выгодно. Как правило, стационарная система характеризуется откликом на единичное воздействие. В связи с этим представляет интерес получить выражения отклика системы, который зависит от параметров метода кусочного размножения оценок (размер скользящего окна
, степень аппроксимирующей функции ).3. временные и частотные характеристики устройства, реализующего метод кусочного размножения оценок
В общем случае выражение (10) можно рассматривать как уравнение дискретного фильтра. Рассмотрим предлагаемый метод оценивания с точки зрения реализации его в виде дискретного фильтра и получим его системную функцию [3].
В общем виде системная функция линейного стационарного дискретного фильтра представляет собой отношение
-преобразования выходного сигнала к -преобразованию входного сигнала [3, 4]. Сопоставим дискретным сигналам , и импульсной характеристике дискретного фильтра соответственно их Z-преобразования , и . Так как выходной сигнал является сверткой входного сигнала с импульсной характеристикой устройства, то можно записать [3, 4]: . (16)Таким образом, чтобы определить системную функцию дискретного фильтра (16), необходимо определить его импульсную характеристику, которая является откликом системы на единичное воздействие.
В этом случае функция единичного скачка, подаваемого на вход, описывается выражением [1]:
где переменная
определяет положение единичного импульса в исходной выборке, подаваемой на вход.В случае стационарной системы ее отклик не зависит от
[3]. Отметим, что рассматриваемый метод имеет особенности, связанные с тем, что способы оценивания на интервалах исходной выборки , и различны. Таким образом, введем начальные условия, которые заключаются в определении отклика системы на интервале .