Смекни!
smekni.com

Метод кусочного размножения оценок при обработке реализаций сигналов ограниченного объема (стр. 7 из 7)


Рис. 13. Семейство импульсных характеристик дискретной системы, реализующей метод кусочного размножения при получении оценки полезного сигнала на начальном интервале значений

при параметре

На рис. 14 представлено семейство АЧХ, полученных на основе семейства характеристик, представленных на рис. 13 при

.

Рис. 14. Семейство амплитудно-частотных характеристик дискретной системы, реализующей метод кусочного размножения при получении оценки полезного сигнала на начальном интервале значений

при параметре

На рис. 14 представлено семейство АЧХ

при различных значениях
. Анализ результатов, приведенных на рис. 13 и 14, показывает, что оценка полезного сигнала на интервалах
и
является нелинейной и представляет собой прохождение исходной реализации через набор фильтров с различными АЧХ. Результаты, представленные на рис. 14 и 13, следует интерпретировать следующим образом. Каждый отсчет на интервале
и
получен в результате свертки исходной реализации с соответствующей импульсной характеристикой (рис. 13), то есть выбор импульсной характеристики на интервале
и
для вычисления оценки полезного сигнала определяет значение
(23). С точки зрения АЧХ, оценкам полезной составляющей, имеющим большую погрешность, соответствуют фильтры с большей полосой пропускания, то есть большее число спектральных составляющих как полезного сигнала, так и шума участвуют в ее получении. С ростом
полоса фильтров уменьшается и стремится к АЧХ для стационарного случая (21) при
(рис. 14). На основе полученных результатов устройство, реализующее метод кусочного размножения оценок, можно представить в виде банка фильтров с различными АЧХ. Если зафиксировать объем выборки, то для граничных интервалов оценивания
и
характеристики фильтров будут иметь вид, представленный на рис. 14.

Таким образом, аналитически показано, что обработку методом кусочного размножения оценок можно рассматривать с точки зрения дискретной фильтрации. Параметры метода обработки однозначно связаны с системной функцией фильтра. Получены выражения для нахождения импульсной характеристики дискретного фильтра, которая зависит как от параметра

и степени аппроксимирующего полинома на каждом интервале
(20). Исследования показывают, что с ростом
происходит расширение эквивалентной шумовой полосы
и эквивалентной ширины главного лепестка
АЧХ. Максимальный уровень ослабления помехи достигается при условии
. Отметим, что этот параметр фильтра имеет смысл рассматривать с точки зрения максимизации отношения сигнал/помеха. Этот критерий не учитывает формы полезной составляющей, так как отдельные спектральные составляющие полезного сигнала могут находиться вне полосы пропускания фильтра, что приведет к искажению оценки и, как следствие, к росту погрешности. Увеличение степени аппроксимирующего полинома
на каждом скользящем интервале приводит к увеличению ширины полосы пропускания фильтра и максимального уровня боковых лепестков, однако при этом удается получить оценку с меньшей погрешностью. Существует некоторое противоречие, которое заключается в том, что, повышая гладкость получаемой оценки, приходится расширять полосу пропускания фильтра и ослаблять его фильтрующие свойства в силу роста максимального уровня боковых лепестков.

Использование разработанного дискретного фильтра позволяет существенно упростить реализацию метода обработки в виде устройства на базе цифровых сигнальных процессоров различного класса.

выводы

1. Разработан метод кусочного размножения оценки полезного сигнала (патент № 2257610), позволяющий обрабатывать исходную реализацию ограниченного объема в условиях априорной неопределенности о полезном сигнале и аддитивной шумовой составляющей.

2. Получены выражения, устанавливающие связь между значениями исходной реализации и значениями оценки полезного сигнала при произвольной степени аппроксимирующего полинома

и значении
, используя систему ортогональных полиномов. Использование свойств ортогональных многочленов имеет широкие возможности для модификации предлагаемого метода обработки, адаптируя степень аппроксимирующей функции на каждом отдельном скользящем интервале.

3. Рассмотрена возможность уменьшения погрешности оценки полезного сигнала на начальном

и конечном
интервале исходной выборки путем модификации метода кусочного размножения, основанной на дополнительном разбиении исходной реализации на этих интервалах, позволяющая увеличить число оценок полезного сигнала в сечениях исходного процесса.

4. Получены выражения для импульсной характеристики и системной функции устройства, реализующего принцип обработки методом кусочного размножения оценок, которые зависят от параметров обработки. Рассмотрен как стационарный, так и нестационарный случай.

5. Исследования системной функции дискретного фильтра, реализующего метод кусочного размножения оценок, показали, что степень аппроксимирующего полинома на каждом интервале

и ширина интервала разбиения
однозначно определяют параметры амплитудно-частотной и фазочастотной характеристики устройства. Максимальный уровень боковых лепестков амплитудно-частотной характеристики слабо зависит от
и в среднем составляет -25 дБ при
, -18 дБ при
и -13 дБ при
. Ширина главного лепестка не зависит от параметра
и составляет при
, при
и при
.

6. Проведены исследования особенности изменения характеристик дискретной системы при реализации обработки на начальном

и конечном
интервале исходной выборки сигнала.

Библиографический список

1. Адаптивные фильтры / под ред. К.Ф.Н. Коуэна и П.М. Гранта. – М. : Мир. – 200

2. Бендат, Дж. Прикладной анализ случайных данных ; пер. с англ. / Дж. Бендат, А. Пирсол. – М. : Мир, 2009. – 540 с.

3. Гольденберг, Л.М. Цифровая обработка сигналов : учеб. пособие для вузов / Л.М. Гольденберг, Б.Д. Матюшкин, М.Н. Поляк. – 2-е изд., перераб. и доп. – М. : Радио и связь, 2010. – 256 с.

4. Гоноровский, И.С. Радиотехнические цепи и сигналы : учебник для вузов / И.С. Гоноровский. М. : Радио и связь, 2006. – 512 с.

5. Корн, Г. Справочник по математике для научных работников и инженеров ; пер. с англ. / Г. Корн, Т. Корн. – М. : Наука, 200 – 832 с.

6. Кремер, Н.Ш. Теория вероятностей и математическая статистика : учебник для вузов / Н.Ш. Кремер. – М. : ЮНИТИ-ДАНА, 2010. – 543 с.

7. Марчук, В.И. Итерационный метод выделения функции полезного сигнала в условиях априорной неопределенности / В.И. Марчук // Известия вузов. Северо-Кавказкий регион. Технические науки. – 2007. –№ 9. – С. 25–35.