Смекни!
smekni.com

Постановка задачи синтеза оптимальных алгоритмов приема сигналов на фоне помех (стр. 4 из 9)

Отметим, что третий центральный момент (p = 3 в (4)) характеризует асимметрию распределения вероятностей (для симметричных плотностей вероятности

), а четвертый (p = 4) – степень остроты вершины плотности вероятности.

Рассмотрим пример вычисления одномерных моментов распределения.

ПРИМЕР 1. Процесс с треугольной симметричной плотностью вероятности виден на экране осциллографа в виде шумовой дорожки с размахом от -2 до +4 В. При выключенной развертке яркость вертикальной линии в центре экрана равномерна. Оценить математическое ожидание и дисперсию процесса.

Решение примера 1. Сведения о форме распределения и его границах позволяет записать аналитическое выражение для плотности вероятности (рис. 14).

При этом максимальное значение плотности вероятности fm, достигаемое при x=1 В, определяется из условия нормировки, т.е. равенства площади треугольника единице:

,

откуда

.

Рис. 14

Такое симметричное треугольное распределение называют также законом Симпсона.

В соответствии с определениями математическое ожидание и дисперсия равны

= 1 В;

.

Однако удобнее вычислить вначале второй начальный момент

= 7 В2,

тогда

= 6 В2.

Смешанные начальные моменты определяются соотношением

. (5)

Смешанные центральные моменты определяются аналогично, но с заменой x в формуле (5) на центрированное значение

.

Ввиду того, что значения x в смешанных моментах определяются в различные моменты времени, появляется возможность оценки статистической взаимозависимости значений процессов, разделенных заданными интервалами. Наиболее важным является простейший из смешанных моментов, отображающий линейную статистическую взаимозависимость и называется корреляционной и ковариационной функцией:

;

. (6)

Как видно из определения, размерность корреляционной функции определяется размерностью квадрата величины x (для напряжения – В2).

Для стационарного СП корреляционная функция зависит только от разности

:

.

Следует заметить, что при t = 0 максимальное значение K(0) = s2.

На рис. 15 приведены примеры реализаций процессов с разными корреляционными функциями.

Кроме функционалов на основе степенных функций (моментов) возможны и другие типы функционалов в качестве статистических характеристик СП. Важнейшим среди них является функционал, основанный на экспоненциальном преобразовании и называемый характеристической функцией

. (7)

Нетрудно заметить, что данное выражение представляет преобразование Фурье от плотности вероятности, отличающееся от обычного лишь знаком в показателе экспоненты.

Поэтому можно записать и обратное преобразование, позволяющее по характеристической функции восстановить плотность вероятности:

.

Соответственно для n-мерного случая имеем

. (8)

Рис. 15

Основные свойства характеристической функции состоят в следующем:

– свойство нормировки

;

– свойство симметрии

;

– свойство согласованности

;

– определение характеристической функции суммы независимых случайных величин

.

Как видно из анализа перечисленных свойств, различные преобразования характеристической функции проще плотности вероятности. Простая связь также между характеристической функцией и моментами плотности вероятности.

Пользуясь определением характеристической функции (7), продифференцируем ее k раз по аргументу u:

.

Отсюда

.

Можно заметить, что операция дифференцирования намного проще, операция интегрирования при определении моментов плотности вероятности.

ПРИМЕР 2. Может ли существовать процесс с характеристической функцией прямоугольной формы?

Решение примера 2. На рис. 16 представлена характеристическая функция прямоугольной формы (а) и соответствующая ей плотность вероятности (б).


Рис. 16

Так как характеристическая функция является преобразованием Фурье от плотности вероятности, то ее обратное преобразование Фурье должно обладать всеми свойствами плотности вероятности. В данном случае

.

График плотности вероятности представлен на рис. 16б.

Как видно из выражения для f(x) и рисунка, полученная плотность вероятности не удовлетворяет условию положительной определенности (

), следовательно, процесс с заданной характеристической функцией не может существовать.

4. Энергетические характеристики случайных процессов

К энергетическим характеристикам СП относят корреляционную функцию, спектральную плотность мощности и непосредственно связанные с ними параметры СП.

В разделе 2 было дано определение корреляционных функций как смешанных центральных моментов второго порядка соответственно автокорреляционной и взаимнокорреляционной функций, т.е.

.

Основные свойства автокорреляционной функции:

– свойство симметрии

, для стационарных процессов – четность
;

– свойство ограниченности

, для стационарных процессов
;

– свойство неограниченного убывания с ростом аргумента (для эргодических процессов)

;

– свойство положительной определенности интеграла

;

– размерность соответствует квадрату размерности случайного процесса.

Это свойство следует из определения спектральной плотности мощности (для случайных напряжений и тока через сопротивление 1 Ом), которое будет приведено ниже.

Для взаимнокорреляционной функции аналогично можно записать:

;
;

;
.

Ввиду ограниченности корреляционной функции частот используют нормированные корреляционные функции


;
,

причем

;
.

Для более компактного описания свойств случайного процесса вводят понятие интервала корреляции, определяющего интервал времени, на котором существует связь между значениями процесса.

Основные определения интервала корреляции:

– интегральный (для положительно определенных корреляционных функций)

. Геометрически он характеризует ширину основания прямоугольника, равновеликого по площади функции k(t) при t > 0 (рис. 17а);