Смекни!
smekni.com

Постановка задачи синтеза оптимальных алгоритмов приема сигналов на фоне помех (стр. 7 из 9)

.

Рис. 24

При Dt ® 0 и n ® ¥ сумма перейдет в интеграл, описывающий временное усреднение реализации (обозначается чертой сверху или в данном пособии:

) или функции от нее:

. (16)

В общем виде можно записать операцию (16) с помощью оператора временного усреднения ST:

.

Для того чтобы результат не зависел от длительности отрезка T, возьмем предел при T ® ¥:

.

При экспериментальных исследованиях выполнение условия T ® ¥ невозможно, но достаточно выполнения условия

.

Часто начало реализации и начало времени интегрирования не совпадают, поэтому оператор

правильнее записать в виде оператора текущего среднего:

. (17)

Используется также симметричная форма этого оператора:

. (18)

Частотные характеристики операторов (4.17) и (4.18) равны соответственно:

,
,

т.е. отличаются лишь фазовым множителем

.

Практически часто используется оператор экспоненциального сглаживания, реализуемый с помощью интегрирующей RC-цепи в форме

и имеющий характеристику

.

Производя временное усреднение некоторой функции g[x(t)], лежащей в основе какой-либо вероятностной характеристики, получим соответствующую временную характеристику. В частности, дисперсия, полученная временным усреднением, равна

;

Временная корреляционная функция –

.

Аналогами распределений вероятностей являются величины относительного времени пребывания реализации ниже некоторого уровня и в интервале уровней (рис. 25).

Аналог интегральной функции распределения вероятностей – относительное время пребывания реализации ниже некоторого уровня (рис. 25а):

;
.

Аналог плотности вероятности – относительное время пребывания реализации в интервале Dx на уровне x (рис. 25б):

;

.

Рис. 25

Процессы, для которых временные характеристики сходятся в некотором смысле к вероятностным при T ® ¥, называются эргодическими. Различают два вида сходимости.

Последовательность случайных величин

сходится по вероятности к случайной величине x, если для любого e > 0

.

Сходимость с вероятностью 1 (или почти всюду) определяется следующим образом:

.

Сходимость в среднем определяется из условия:

,

в частности, сходимость в среднеквадратическом –

.

Из сходимости почти всюду следует сходимость по вероятности, а из сходимости в среднеквадратическом также следует сходимость по вероятности.

Часто имеет место не эргодичность процесса, а эргодичность по отношению к математическому ожиданию, корреляционной функции или иной вероятностной характеристике.

7. Особенности нестационарных случайных процессов

Нестационарные СП, в отличие от стационарных, составляют столь широкий класс, что в нем трудно выделить свойства, относящиеся ко всему классу. Одним из таких свойств, лежащих в основе определения нестационарности, является зависимость вероятностных характеристик этих процессов от времени.

В частности,

,

.

Пример процесса, существенно нестационарного по математическому ожиданию, приведен на рис. 26а, по дисперсии – на рис. 26б.

Нестационарность по математическому ожиданию хорошо описывается моделью аддитивного нестационарного процесса:

X(t) = Y(t) + j(t),

где Y(t) – стационарный СП; j(t) – детерминированная функция.

Нестационарность по дисперсии описывается моделью мультипликативного нестационарного процесса: X(t) = Y(t)·j(t).

Простейшие примеры нестационарности по моментным функциям в более общем виде описываются зависимостями вероятностных распределений от времени.

Рис. 26

Более сложным является отображение нестационарности в рамках многомерных (и даже двумерных) вероятностных характеристик. Наиболее широко используются корреляционные и спектральные характеристики. Поскольку корреляционная функция нестационарного СП зависит от двух моментов времени, спектр нестационарного процесса не может быть определен столь однозначно, как в стационарном случае. Существует несколько определений спектра нестационарных процессов:

а) двойной по частоте спектр или биспектр:

. (19)

В случае стационарного процесса

и соотношение (19) переходит в теорему Винера – Хинчина. Биспектр (19) трудно физически интерпретировать и использовать при анализе цепей, хотя он отображает всю информацию о частотных свойствах процесса;

б) мгновенный частотно-временной спектр.

Заменим в

переменные следующим образом:
, t = t1 – t2 и выполним преобразование Фурье от корреляционной функции по аргументу t:

. (20)

Мгновенный спектр (20) зависит как от частоты, так и от времени и при медленной нестационарности имеет наглядную физическую интерпретацию как изменение «обычной» спектральной плотности мощности во времени (рис. 27);

в) усредненная спектральная плотность мощности

,

где

.

Этот спектр не отображает динамики процесса, но дает представление о среднем распределении дисперсии процесса по частоте;

г) аппаратурный спектр определяется как среднее значение дисперсии процесса на выходе узкополосного фильтра с импульсной реакцией h(t):

.

Рис. 27

Этот спектр допускает аппаратурное определение, но использование его в теории достаточно трудоемко.

ПРИМЕР

Решение примера Рассмотрим пример нестационарного СП, имеющего плотность вероятности, выраженную функцией

где

; a0 = 1 1/В; k = 2 1/Вс.

Необходимо найти математическое ожидание процесса и нарисовать ориентировочно возможный вид реализации процесса.

Для решения задачи прежде всего определим незаданную функцию А(t) из условия нормировки:

.

Отсюда A(t) = a(t).

Поскольку процесс нестационарный, его математическое ожидание может зависеть от времени и в данном случае равно

.

Учитывая известное значение определенного интеграла [1]

при

где

– гамма-функция,
, получим

.

Возможный вид реализаций процесса, не противоречащий виду распределения, приведен на рис. 28.