Содержание
Основная часть
Выводы
Библиографический список
В современных радиоэлектронных системах в процессе передачи сигнала на него накладываются различные шумы. Процесс приема и перевода сигнала в цифровой вид также сопряжен с внесением в сигнал шумовой составляющей. В большинстве случаев шум является аддитивным. Как правило, при обработке сигнала основной задачей является выделение полезной и ослабление шумовой составляющей. Для решения данной задачи чаще всего используются критерий минимума среднеквадратической погрешности или критерий среднеабсолютного отклонения. В связи с чем актуальной является задача обработки цифрового сигнала одновременно по нескольким критериям [1].
В связи с этим значительный интерес представляет использование многокритериальных методов обработки результатов измерений, представленных единственной реализацией при ограниченном объеме априорной информации о функциях полезной составляющей и шуме.
Цель работы – уменьшение дисперсии шумовой составляющей многокритериальными методами сглаживания входного сигнала, представленного единственной реализацией нестационарного случайного процесса в условиях априорной неопределенности.
Пусть исходные результаты измерений представляют собой дискретную последовательность значений измеряемой физической величины
, полученную в равноотстоящие моменты времени где ( - константа). Данную выборку результатов измерений можно рассматривать как реализацию случайного процесса , который является аддитивной смесью полезного сигнала и шума. Упрощенная математическая модель входного сигнала представляется в виде: , , (1)где
– полезная составляющая; – аддитивная шумовая составляющая; – объем выборки.Функциональная зависимость от времени
полезной составляющей неизвестна. Закон распределения аддитивного шума также считается априорно неизвестным. Однако предполагается, что плотность распределения шумовой составляющей имеет нормальный закон, а математическое ожидание равно нулю.Получение оценки
величины можно интерпретировать как уменьшение дисперсии аддитивного шума . Предлагается уменьшать дисперсию измеряемого процесса путем существенного уменьшения суммы квадратов конечных разностей его значений [2]: (2)а также (или) уменьшения суммы квадратов конечных разностей второго порядка:
. (3)При этом в качестве меры расхождения исходного и полезного сигналов используется сумма:
. (4)Для определения оценок
будем стремиться одновременно уменьшить суммы (2 и(или) 3) и (4). Эта цель достигается минимизацией двухкритериальных целевых функций вида [1–3]: , (5) , (6)а также минимизаций трехкритериальной целевой функцией вида:
,(7)где
и – постоянные регулировочные множители. При реализации рассматриваемых методов сглаживания наилучшие результаты на основе использования имитационного моделирования достигаются при значениях в случае использования целевых функций вида (5) и (6) и , в случае использования целевой функции вида (7).Заметим, что целевые функции (6, 5–7) непрерывны и ограничены снизу на множестве
, поэтому, по крайней мере, в одной точке достигает своего наименьшего значения. Докажем единственность такой точки на примере целевой функции вида (5). В силу необходимого условия экстремума ее координаты должны удовлетворять системе уравнений: , (8)то есть следующей системе
линейных уравнений с неизвестными : . (9)Перепишем систему (9) в виде:
. (10)Докажем, что система уравнений (10) имеет единственное решение. С этой целью методом математической индукции установим справедливость утверждения
«первые уравнений системы (10) задают переменные как линейные функции аргумента т.е. , причем , » при каждом (полагаем здесь ). При имеем , , а в случае – , где , , то есть утверждения , верны. В предположении верности утверждения при некотором докажем справедливость утверждения . Из -го уравнения системы (10) получаемгде
; .Итак, утверждения
выполнены. С помощью утверждения последнее уравнение системы (10) приводится к виду где , . Полученное уравнение имеет единственное решение , по которому однозначно определяются значения , где .