Основи теорії сигналів
Спектральний метод аналізу, заснований на поданні сигналу у вигляді суми (або інтегралу) гармонічних складових (гармонік) і подальшому розрахунку проходження кожної з гармонік через коло. Вихідний сигнал знаходиться на основі принципу накладання у вигляді суми відгуків на кожну з гармонік вхідного сигналу. Сукупність гармонік, на які розкладаються сигнали, називається їх спектрами.
Вивчення спектрів розпочинається з періодичних імпульсних відеосигналів.
Імпульсними називаються струми і напруги кінцевої енергії, миттєві значення яких відмінні від нуля впродовж деякого (як правило, досить невеликого) інтервалу часу.
Періодичні послідовності імпульсів (рис. 1) відносяться до періодичних несинусоїдних процесів і знаходять широке використання в радіоелектроніці.
Рисунок 1 – Періодична послідовність імпульсів
Періодичні послідовності імпульсів характеризуються їх формою, тривалістю
, періодом повторення (або частотою ), висотою (максимальним значенням) – .Тривалість імпульсів
знаходять на деякому рівні від висоти (у границі на нульовому рівні), або як інтервал часу, в якому міститься визначена потужність імпульсу (зазвичай 90 або більше).Інколи вводиться також вторинний параметр – щілинність:
Періодична послідовність імпульсів, описується функцією
, яка задовольняє умови Діріхле і може бути подана нескінченим рядом (рядом Фур’є) гармонік з частотами, кратними частотам слідування , : , (1)де
– комплексна амплітуда -ї гармоніки, – постійна складова імпульсів (середнє значення).Сукупність амплітуд гармонік
називають спектром амплітуд або амплітудно-частотним спектром (АЧС).Сукупність початкових фаз
називають спектром фаз або фазочастотним спектром (ФЧС).АЧС і ФЧС зображують у вигляді графіків, в яких за віссю абсцис відкладають частоту (
або ), а за віссю ординат – амплітуди гармонік у АЧС і початкові фази у ФЧС (рис. 2). Властивістю спектра періодичного коливання є поступове зменшення амплітуд гармонік зі зростанням їх частоти. Це дозволяє оперувати з нескінченними межами сум у (1), а з сумами обмеженими . Кожній парі ординат графіків АЧС і ФЧС відповідна частота однієї з гармонік, тобто , , повністю визначають параметри цієї гармоніки. Наприклад, на рис. 3 побудована у функції часу друга гармоніка спектра з частотою , амплітудою і зсувом максимуму косинусоїди вправо (відносно ) на відрізок часу пропорційний .Оскільки середня потужність періодичного сигналу є сумою потужностей гармонічних складових сигналу і потужності сталої складової, ширина спектра визначається частотою коливання з амплітудою
, яка ще впливає на значення середньої потужності на заданому рівні: .Рисунок 2 – Графіки АЧС (а) і ФЧС (б)
У тих випадках, коли
– парна функція часу, в (1) дорівнює нулю або . Для непарної функції, навпаки, ряд Фур’є складається тільки із синусоїдних коливань, тобто дорівнює або .У двох послідовностях імпульсів
і , які відрізняються тільки початком відліку часу, АЧС однакові, а відрізняються тільки їх ФЧС. Дійсно, якщо , тоді (2)Таким чином, при зсуві сигналу на
фази його гармоніки змінюється на .Як ілюстрації наведемо результати розкладу в ряд Фур’є періодичної послідовності прямокутних імпульсів (рис. 4), яку аналітично можна записати у вигляді:
Рисунок 4 – Періодична послідовність прямокутних імпульсів
На підставі (2)
можна подати у вигляді: . (3)Обвідна амплітуд спектра визначається значеннями функції:
,де
, при , тобто , і амплітуди гармонік дорівнюють нулю.Позитивним значенням
відповідають нульові значення фаз гармонік, від’ємним – початкові фази рівні , тому що , тобто початкові фази гармонік у (3) визначаються як:Графіки АЧС і ФЧС наведено на рис. 5 Графіки побудовано для щільності
. Такі спектри мають назву дискретних.При змінюванні тривалості імпульсів або частоти їх повторення змінюються і спектри. Рис. 6 ілюструє зміни у спектрах при збільшенні тривалості імпульсів
і незмінній частоті повторення . При збільшенні тривалості імпульсів відбувається «стиснення» спектра – гармонічні складові, які мають найбільші амплітуди, зсуваються в область більш низьких частот. Інтервали між спектральними лініями за частотою не змінюються.Рис. 7 ілюструє зміни у спектрах при збільшенні періоду і незмінній тривалості імпульсу. Збільшення періоду (зменшення частоти слідування) призводить до зменшення інтервалу між спектральними лініями. При цьому зменшується і амплітуда всіх складових спектра, що фізично пояснюється зменшенням потужності у періодичної послідовності імпульсів.