Содержание
Основная часть
Выводы
Библиографический список
аномальное аппаратура оборудование радиосигнал
При регистрации, обработке и обмене данными в современных измерительно-вычислительных и информационных системах потоки сигналов искажены действием помех (шумов), природа возникновения которых различна и зачастую носит случайный характер. Шумовая составляющая может содержать и аномальные значения. Для решения задачи выделения полезной составляющей нестационарного случайного процесса применяются различные классические процедуры фильтрации, результаты которых зависят от наличия в исследуемом процессе аномальных значений.
Аномальными называют значения, резко отличающиеся по величине и статистическим свойствам на фоне основной группы значений реализации процесса. Природа возникновения и источники аномальных значений различны, это может быть импульсная помеха, кратковременные повышения уровня шумов на входах приемников, сбой в работе регистрирующей аппаратуры, отказ оборудования, кратковременное внешнее воздействие на измерительный элемент, «залипание» разряда цифрового счетчика, атмосферные воздействия при передаче радиосигналов, индустриальные помехи и т.д.
До недавнего времени на практике для обнаружения аномальных значений широко применялись ручные способы, основанные на визуальном просмотре зарегистрированных реализаций нестационарных случайных процессов и сравнение их с контрольными реализациями известной формы. Помимо субъективизма в критериях обнаружения аномальных значений, основанных, главным образом, на опыте и интуиции экспериментатора, подобные способы не допускают автоматизации процедур обработки исследуемых реализаций.
Для преодоления отмеченных недостатков, как показано в работах [1, 2], предлагается использовать теорию статистических решений, которая позволяет формализовать алгоритмы проверок и выбрать критерий обнаружения аномальных значений. Возможно применение как параметри-ческих, так и непараметрических методов теории решения. В первом случае необходимо располагать априорными сведениями как о функции полезной составляющей, так и о законе распределения шумовой составляющей, а также и о его параметрах (математическом ожидании, дисперсии, корреляционной функции). Использование непараметрических методов обработки требует значительно меньше априорной информации, но их эффективность определяется параметрами обработки, которые, в свою очередь, зависят от функции полезной и закона распределения шумовой составляющих процесса.
В связи с этим значительный интерес представляет разработка и исследование способа обнаружения аномальных значений при анализе нестационарных случайных процессов, представленных единственной реализацией.
В работах [3, 4] представлен метод выделения полезной составляющей нестационарного случайного процесса, который имеет высокую эффективность в условиях априорной неопределенности. Суть метода состоит в размножении не самой реализации исходного процесса, а оценок, получаемых определенным образом. Автор работ [3, 4], основываясь на основных принципах метода размножения оценок, предлагает и метод обнаружения аномальных значений при анализе нестационарных случайных процессов. В работах [3, 4, 5, 6 и др.] аналитически определены значения основных параметров метода обнаружения аномальных значений и показана его эффективность при анализе как стационарных, так и нестационарных случайных процессов с аддитивной шумовой составляющей.
К одному из достоинств метода обнаружения аномальных значений можно отнести также следующее: применение двухпорогового критерия принятия решения об аномальности значения процесса позволяет получить результаты, при которых с увеличением величины аномальных значений, выборочные значения вероятности ошибки первого рода
стремятся к минимальным значениям, в то время как выборочные значения вероятности правильного обнаружения стремятся к максимальным значениям [4, 5, 6].Наряду с достоинствами предлагаемого метода обнаружения аномальных значений, представленного в работах [4, 5], выявлено, что он обладает весьма существенными недостатками, одним из которых является зависимость порогового значения от некоторого постоянного коэффициента
. Правильный выбор коэффициента позволит повысить эффективность обнаружения аномальных значений.Поэтому в данной работе на основе проведенных исследований предлагается модификация уже существующего метода обнаружения аномальных значений, которая заключается в выборе правила определения коэффициента
при задании порогового значения.Модификация предлагаемого в работе способа обнаружения аномальных значений предполагает введение адаптации порогового значения относительно коэффициента
при априорно фиксированном значении вероятности ошибки первого рода .Предлагаемый в данной работе способ предполагает наличие единственной дискретной реализации исследуемого нестационарного случайного процесса
. Априорная информация об исследуемом процессе заключается в том, что на некоторых интервалах времени полезная составляющая процесса является гладкой функцией [6], т.е. достаточно точно описывается полиномом не выше второй степени: . (1)Реализация исследуемого процесса разбивается на интервалы случайной длины, получаемые следующим образом: с помощью генератора случайных чисел, равномерно распределенных в интервале (0;1), получают
чисел . Используя выражение , осуществляется взаимнооднозначное отображение промежутка (0;1) на интервале значений исследуемого нестационарного случайного процесса , получая при этом соответствующее разбиение числами промежутка на непересекающихся интервалов, где , . (2)Вводятся обозначения для интервалов разбиения:
, , …, .(3)Каждый интервал разбиения
содержит не менее отсчетов (минимальная длина интервала разбиения) исходного нестационарного случайного процесса из набора , в противном случае случайные числа, формирующие данный интервал разбиения , отбрасываются и генерируются заново. Наличие этого условия означает, что .Для получения каждой новой оценки процедура разбиения отрезка
на интервалов случайной длины (с проверкой выше указанного условия) повторяется. В результате получаем разбиений временного отрезка [7] . … … . (4) …На каждом интервале разбиения
, где и , с помощью метода наименьших квадратов находятся оценки , , коэффициентов аппроксимирующего полинома как решение системы линейных уравнений: