Смекни!
smekni.com

Расчет перископической антенны радиорелейной станции прямой видимости (стр. 1 из 3)

СОДЕРЖАНИЕ

1.Исходные данные

2.Вступление

3.Сравнительная характеристика антенн. Выбор типа антенны.

4.Выбор конструкции антенны

5.Расчет высоты установки антенны над поверхностью Земли

5.1.Расчет рабочей частоты

5.2.Расчет высоты установки антенны

6.Расчет конструкции, параметров и характеристик антенны

6.1.Определим коэффициент усиления антенны G

6.2.Определение диаграммы направленности

6.3.Определение параметров рупора

7.Выбор схемы и конструкции устройства питания

8.Выводы и заключения


Исходные данные:

Вступление

Радиорелейная связь - развивающийся вид связи благодаря ряду преимуществ по сравнению с другими видами связи.

Основными достоинствами радиорелейных линий являются:

1. Большая гибкость и маневренность;

2. Возможность высококачественной передачи на дальние расстояния очень большого количества одновременных сообщений;

3. Работа в диапазоне дециметровых и сантиметровых волн с использованием остронаправленных антенн, обладающих большим усилением;

4. Практическое отсутствие атмосферных и промышленных помех в рабочем диапазоне частот.

Радиорелейная связь в диапазоне СВЧ основана на многократной ретрансляции сигнала, т.е. на повторной передаче принятых сигналов. Промежуточные станции по трассе располагаются на разных расстояниях, но при условии, чтобы расстояние между соседними станциями не превышало дальности прямой видимости.

При расчете радиорелейной линии исходят из основного требования обеспечения надежности и качества передачи необходимой информации при наименьшем количестве промежуточных станций.

Антенны радиорелейных линий должны иметь высокий коэффициент усиления (обычно ЗОдБ в дециметровом диапазоне и 40-50 дБ в сантиметровом) и низкий уровень боковых лепестков.

Наиболее распространенными видами антенн для радиорелейных линий являются: рупорно-параболическая, перископическая и рупорно-линзовая.

Применение того или иного вида антенны определяется технико-экономическими требованиями к радиорелейной системе. Перископическая антенна характерна отсутствием длинных волноводных питающих трактов, что упрощает строительство и эксплуатацию радиорелейной линии. К недостаткам антенны относится ее малая помехозащищенность, являющаяся прямым следствием того, что система передачи энергии от передатчика к верхнему зеркалу является открытой.

радиорелейная линия антенна

Сравнительная характеристика антенн. Выбор типа антенны

Тип антенны Характеристика
Вибраторные 1. Одновибраторные2. Петлевые (Вибратор Пистолькорса)3. Рамочные (магнитные вибраторы)4. Турникетные Наиболее просты в изготовлении, вследствие чего наиболее распространены, особенно на частотах метрового и дециметрового диапазонов. Вследствие низкого КНД используются в основном как приемные. Легко может быть реализована как линейная, так и круговая поляризация (турникетные антенны). При использовании специальной конструкции могут быть достаточно широкополосные (диполь Надененко) – полоса до 50%. Входные сопротивления могут изменятся в большом диапазоне значений в зависимости от конструкции
Рупорные 1. Пирамидальные - H-, E- секторальные- Остроконечные- Клиновидные2. Конические Являются модификацией простейшего излучателя в виде открытого конца волновода, видоизмененного для получения большего КНД. Это наиболее простые антенны, являющиеся частью питающего волновода. Имеют высокий КПД, являются широкополосными устройствами, однако для достижения высокого КНД необходимо увеличивать сильно размеры раскрыва рупора. Для обеспечения круговой поляризации необходимо вводить дополнительные элементы в раскрыв рупора, либо применять пару рупоров с взаимным смещением фаз 900. Формируют ДН от 100 (в пирамидальных) до 1400 (при раскрыве специальной формы). Применяются в качестве облучателей зеркальных и линзовых антенн, а также (реже) в антенных решетках.
Антенны поверхностных волн1. Плоские с диэлектрическим направителем2. Плоские с ребристым направителем3. Стержневые диэлектрические4. Ребристо-стержневые5. Дисковые диэлектрические6. Дисковые ребристые Обладают малыми поперечными размерами, хорошими диапазонными свойствами по диаграмме направленности и входному сопротивлению. Технология их изготовления достаточно проста. Недостатком таких антенн является большой УБЛ, а также большие потери в диэлектрическом направителе.
Волноводно-щелевые антенны1. Резонансные2. Нерезонансные Ввиду отсутствия выступающих частей излучающая поверхность может быть совмещена с внешними обводами корпуса летательного аппарата. Распределение поля в раскрыве может выбираться в широких пределах за счет изменения связи излучателя с волноводом; имеет сравнительно простое возбуждающее устройство, проста в эксплуатации.
Спиральные 1. Плоские2. Цилиндрические3. Конические Основное преимущество – легкость обеспечения поляризации ЭМВ, близкой к круговой без введения дополнительных элементов, простота конструкции. Однако для получения высоконаправленной антенны её длина должна быть недопустимо большой (не выполняется условие механической прочности).
Линзовые1. Замедляющие 2. Ускоряющие3. Геодезические4. Неоднородные Обеспечивают высокую направленность излучения/приема, однако по сравнению с зеркальными менее требовательны к точности изготовления поверхности, имеют 3 степени свободы (2 поверхности преломления и закон распределения коэффициента преломления) для придания антенне дополнительных свойств (широкоугольное качание диаграммы направленности, требуемое распределения амплитуды и фазы поля по раскрыву). Также отсутствует затенение раскрыва облучателем. Существенными недостатками являются большая масса, узкополосность и потери в веществе линзы.
Зеркальные 1. Осесимметричные- Однозеркальные- Двухзеркальные (по схеме Кассегрена или Грегори)2. Офсетные3. Рупорно-параболические 4. Перископические Легко обеспечивают высокую направленность, широкополосны, имеют сравнительно простую конструкцию. При высоких частотах требования к точности изготовления очень жесткие (отклонения порядка
). Круговая поляризация обеспечивается конструкцией облучателя или введением дополнительных элементов, что усложнит и утяжелит конструкцию.

Выбор конструкции антенны

Перископическую антенную систему можно разбить на две части: излучающая антенна и переизлучатель. Излучающая антенна состоит, в свою очередь, из облучателя и нижнего зеркала. Переизлучатель называется иначе верхним зеркалом. Излучающая антенна располагается обычно на небольшой высоте вблизи передатчика или усилительного устройства, соответственно передающего или принимающего сигнал из антенны.

Верхнее зеркало располагается на довольно значительной высоте и крепится на башне. Высота расположения верхнего зеркала или высота башни определяется исходя из расстояния между соседними ретрансляционными пунктами. Зеркала антенны устанавливаются и ориентируются таким образом, чтобы энергия электромагнитных колебаний, излученных антенной, перехватывалась верхним зеркалом и направлялась на соседнюю ретрансляционную станцию.

Наиболее рациональным является вариант с разнесенным облучателем и нижним зеркалом. В данном случае облучатель располагается вблизи передатчика, что обеспечивает минимальную длину волновода, соединяющего облучатель с передатчиком. Нижнее зеркало отнесено далеко от облучателя, что облегчает условия согласования облучателя с нижним зеркалом.

По форме поверхности зеркала могут быть выполнены в виде части поверхности параболоида или эллипсоида вращения. В простейшем случае зеркало может быть выполнено плоским. Форма зеркала определяет дополнительные условия фокусировки луча внутри антенны. Эллипсоидальная форма зеркала обеспечивает наилучшие фазовые соотношения луча на выходе антенны. Для получения минимальных фазовых искажений сигнала на выходе антенны наиболее рациональным считается вариант с эллипсоидальным нижним и параболическим верхним зеркалами, который мы и будем использовать.

Облучатель расположен в одном из фокусов эллипсоида, а центр переизлучателя - в другом фокусе. Главная ось параболоида, частью которого является верхнее зеркало, направлена на приемную антенну. Поток энергии от нижнего зеркала к верхнему будет несколько сужаться, что приводит к некоторому увеличению к.п.д. передачи по сравнению с параллельным пучком.

По форме контура зеркала могут быть квадратными, ромбическими, эллиптическими и круглыми. Последняя форма является наиболее удобной в технологическом отношении и обеспечивает получение диаграммы направленности антенны с меньшим уровнем боковых лепестков. В нашем случае форма контура зеркала не будет точно круглой, но с достаточной степенью точности мы можем считать ее таковой.

В качестве облучателя нижнего зеркала в сантиметровом диапазоне волн удобно использовать пирамидальный рупор.

При больших, по сравнению с длиной волны, раскрывах зеркал и больших, по сравнению с раскрывами, расстояниях между зеркалами, что обычно имеет место в перископических системах, возможно сделать следующие допущения:

1. Расчет распределения поля от эллипсоидального нижнего зеркала у поверхности верхнего производят по формулам диаграммы направленности для дальней зоны синфазно возбужденной плоской поверхности с теми же размерами и распределением амплитуд, что и реальное зеркало.

2.Форму фазового фронта волны у поверхности верхнего зеркала можно считать сферичной с центром на поверхности нижнего зеркала. Поэтому, для получения плоского фазового фронта на выходе антенной системы необходимо верхнее зеркало сделать параболоидальным с фокусом параболоида в центре нижнего зеркала.