Смекни!
smekni.com

Проектирование перестраиваемого генератора синусоидального напряжения с устройством индикации частоты и источником питания (стр. 2 из 3)

Частота среза данного фильтра определяется выражением fСР=1/(2pR11C5).

Расчёт производим по следующей формуле:

.

Получаем:

1) fСР4= 200 Гц., С4 = 800 нФ.

2) fСР3= 300 Гц., С3 = 533 нФ.

3) fСР2= 400 Гц., С2 = 400 нФ.

4) fСР1= 550 Гц., С1 = 290 нФ.

Для обеспечения требуемого в ТЗ выходного напряжения данного генератора необходимо поставить усилитель.

Для уменьшения нелинейных искажений сигнала и уменьшения коэффициента частотных искажений усилитель целесообразно охватить глубокой ОС. Поэтому коэффициент усиления по напряжению небольшой.

Так как ОУ обеспечивает получение требуемой амплитуды напряжения (10 В), и не позволяет получить нужное значение тока (0,01 А), то на выходе целесообразно установить усилитель мощности. Его можно выполнить на основе эмиттерных или истоковых повторителей.

мА,
мА.

Для получения в нагрузке тока 10 мА коэффициент усиления по току у выходного каскада должен быть равен

.

Выбор оконечных транзисторов VT2 и VT4.

Их следует выбирать так, чтобы они удовлетворяли следующим неравенствам:

, E=15 В, для плеча
В;

, ток коллектора
А;

, следовательно,
Вт;

, следовательно,
Вт;

Вт.

Рис. 2 Принципиальная схема усилителя

По полученным данным в качестве VT2 и VT4 необходимо использовать транзисторы средней мощности: VT2 – KT970A (n-p-n), VT4 – KT971A (p-n-p): h21Э1= h21Э2=150, r=2 Ом.

Токи транзисторов VT1 и VT3 в 20-50 раз меньше токов VT2 и VT4. Частотные искажения транзисторов VT1 и VT3 можно пренебречь ввиду их малости. Эти транзисторы обычно бывают малой мощности. VT1 –KT817A, VT3 – KT816A, h21Э3= 3 h21Э2=4, r=0.2 Ом.

Коэффициент усиления по напряжению возьмём – KU=3. Отсюда

, R12=0.4 кОм, тогда R13 = 1.2 кОм. Найдём КОС:

.

Резистор R14 защищает ОУ от короткого замыкания на выходе: R14=0.78 кОм.

Резисторы R19 и R20 введены для защиты выходного каскада от короткого замыкания выходных зажимов. Их следует выбирать из следующих условий: при RH=0 VT2, VT4: Iк2< Iк1max, VT1, VT3: Iк2< Iк2max, где Iк2max=2 А; Iк2max=0,8 А; Uпит=15 В.

R19=7.5 Ом, R20 = 18.75 Ом.

Резисторы R17 и R18 необходимы для того, чтобы создать путь для протекания обратных токов базы транзисторов VT2 и VT4 в тот полупериод, в который соответствующий транзистор заперт. Их выбираем из условия UБэпор>IКБОmax*R; UБэпор – пороговое напряжение, при котором отпирается эммитерный переход транзистора. IКБОmax – максимальный обратный ток коллекторного перехода при наибольшей температуре резистора. R= R17 = R18.

Характеристика КТ973А: UБэпор>0,6 В, IКБОmax = 40 мА, тогда

Ом. Из [E192] R18=R17=R=13 Ом.

Резисторы R15 и R16 и количество диодов VD в каждом плече выбирается по следующему принципу. На базы транзисторов VT1 и VT3 подаём небольшое постоянное UСМ (должно открывать транзисторы VT1 и VT3 и устранять нелинейные искажения. Они исчезают при 15-20 мА). Следует Iпокоя транзисторов VT1 и VT3 зададим 0,2-1 мА. Пусть IКо=0,3 мА.

мА. По выходной характеристике транзисторов КТ819А находим, что при IБО=0,1 мА UБЭ=2,68 В.

Ток транзистора VT1 создает на сопротивлении в эмиттерной цепи падение напряжения U»IКо∙R6=0.3∙13=3.9 В. Напряжение смещения на транзисторах

Ток транзистора VT1 создает на сопротивлении в эмиттерной цепи падение напряжения U»IКоR6=0.3∙13=3,9 В. Напряжение смещения на транзисторах VT1 и VT3 Uсм=UБЭ+U=6,58 В.

В качестве диодов VD1 и VD2 используются маломощные диоды КД209А. Ток цепи, обеспечивающий напряжение смещения, обычно выбирается в 5-10 раз больше тока базы IБО. Эти цифры определяют приближенное значение тока через резисторы R15 и R16 (10 мА). Ориентируясь на это значение тока, выбираем данный тип диода по справочнику. UСМ=nUd, где n – количество последовательно включенных диодов, Ud – падение напряжения на диоде. При этом следует использовать диоды из того же материала, из которого выполнены транзисторы, ток чтобы p-n переходы транзисторы были по возможности идентичными. IД=10 мкА, падение напряжения равно 4 В. Отсюда следует, что в каждое плечо вводим по 2 диода.

Значения резисторов R15 и R16 находятся из следующего уравнения:

кОм.

Оценим погрешность

при включении RНmin.

Для этого представим генератор в виде:


;U=I∙RВЫХ;
Ом.

%.

Значение погрешности равно 0,00024%, что меньше заданного в ТЗ 2%.


Проектирование частотомера

Необходимо разработать частотомер, измеряющий частоту выходного напряжения генератора в диапазоне от 30 Гц до 500 Гц с погрешностью 10 Гц и временем индикации 1 с, построенного на элементах имеющих ТТЛ структуру. В качестве частотомера будет использоваться электронно-счётный частотомер, работа которого основана на подсчёте числа импульсов измеряемого сигнала в течение заданного интервала.

Описание принципа работы и компонентов электронно-счётного частотомера.

Исходя из предложенной структурной схемы данный частотомер разбит на следующие блоки:

1) Мультивибратор.

2) Формирователь.

3) Генератор с кварцевым резонатором.

4) Формирователь времени измерения.

5) Логического элемента И.

6) Преобразователи фронта и среза в импульс.

7) СД элемент.

8) Светодиодный индикатор.

9) Т-RS-триггер.

Мультивибратор собран на микросхеме К1006ВИ1 (DD1), служит для генерации задающих прямоугольных импульсов. Для повышения точности, корректировки работы мультивибратора и генератора в схему включен формирователь времени измерения. Он позволяет получить чёткие задающие импульсы с длительностью логической единицы 1 с и длительностью логического нуля 1 с. Формирователь времени измерения реализован на 5-ти счётчиках делителях на 8 530ИЕ14 (DD10, DD11, DD12, DD13, DD14).

Генератор с кварцевым резонатором предназначен для получения по настоящему стабильных колебаний на высокой частоте. В нем используется кусочек кварца (искусственного – двуокись углерода), вырезанный и отшлифованный таким образом, что он имеет определенную частоту колебаний (32768 Гц).

Высокая добротность Q(10000) и хорошая стабильность делают естественным его применение как задающего элемента в генераторах и фильтрах с улучшенными параметрами. В данном частотомере, генератор выполнен на основе микросхемы 530ЛА3.

T-RS-триггер – 530ТМ2. Триггеры широко используются во многих узлах электронной аппаратуры в виде самостоятельных изделий и в качестве базовых элементов для построения других более сложных устройств (счётчиков, регистров, запоминающих устройств).

Они представляют собой простейшие последовательные устройства, общим свойством которых является способность длительно оставаться в одном из двух возможных состояний, который распознаются по значению их входных сигналов. В простейшем случае триггер представляет собой симметричную структуру из двух логических элементов ИЛИ-НЕ или И-НЕ, охваченных перекрестной положительной обратной связью.

Формирователь служит для преобразования входных сигналов, имеющих синусоидальную форму, в прямоугольные импульсы, которые затем считываются счётчиком-дешифратором элементом 133ПП4, в течении первой 1 с происходит подсчёт количества импульсов, а в течении следующей 1 с – вывод на индикаторы АЛС333Б (HG1 – HG4) результата подсчёта.

Формирователь основан на операционном усилителе К140УД26А (DA1), в обратную связь которого установлены диод и стабилитрон. Диод служит для отсечения отрицательной составляющей входного сигнала, а стабилитрон ограничивает положительную составляющую. Таким образом, на выходе операционного усилителя сигнал представляет собой практически прямоугольные импульсы.