Катоды каждой ячейке индикатора, а так же трех светодиодов подключены к отдельным выводам микроконтроллера. Подавая сигнал управления на определенный катод и анод можно зажечь необходимый светодиод. В каждый момент времени может гореть только один светодиод. Чтобы не было заметно мерцания весь цикл переключения светодиодов должен происходить с частотой 100 Гц или выше. На пульте управления расположены три кнопки: «СТАРТ/СТОП», «+», «-». Контроллер должен обрабатывать одиночное нажатие кнопки. При включении устройства на индикаторе высвечивается значение тока, установленное во время последнего процесса работы. При нажатии на кнопки «+» и «-» это значение соответственно увеличивается или уменьшается с шагом 1 А в пределах от 0 А до 70 А. Если не нажимать кнопки «+» или «-» в течении трех секунд или нажать кнопку «СТАРТ» в течении этого времени, текущее значение тока сохраняется и передается в контроллер системы управления. Если во время работы преобразователя нажать кнопки «+» или «-», то на семисегментном индикаторе отобразится температура на радиаторе преобразователя.
Для управления пультом используем микроконтроллер MC9S08QE8 (DD2) фирмы FreescaleSemiconductor[18]. Это один из недорогих микроконтроллеров, обладающий нужным количеством портов. Контроллер поддерживает протокол SPI, который удобно использовать для связи с другими контроллерами с использованием гальванической развязки. Для индикации используем сборку из трех семисегментных индикаторов BA56-11SRWA (HG1) желтого цвета и светодиоды L-53SGD (HL1 – HL3). Для свечения светодиодов требуется обеспечить ток IF=20 мА. Выводы контроллера не могут обеспечить такой ток, поэтому для их усиления используем сборку из восьми транзисторов дарлингтона ULN2803AF (DA1). Резисторы включенные между выходами DA1 и катодами HG1 ограничивают выходной ток. Для ограничения тока IF требуется использовать резисторы с номиналом:
(5.1)Однако при таком токе свечение светодиодов будет слишком ярким. Экспериментальным путем было установлено, что для обеспечения нужной яркости свечения требуется использовать резисторы номиналом 220 Ом. Используем чип резисторы RC0805 620 Ом. VT1 – VT3 – полевые p-n-p транзисторы IRLML5103 в корпусе SOT-23 для поверхностного монтажа. Максимальный ток стока – 760 мА, максимальное напряжение сток-исток 30 В. R9 – R11 – чип резисторы RC0805 1 кОм. Кнопки SB1 – SB3 типа DTSM81.
Напряжение питания пульта управления 3.3 В. Питание обеспечивается источником питания собственных нужд, который расположен на силовой плате преобразователя. Конденсаторы C65, C66 – чип конденсаторы CC0805 15 пФ [стр. 16, 18]. Остальные конденсаторы на плате пульта управления служат для защиты микросхем и других элементов схемы от помех по питанию. Используются чип конденсаторы CC0805 0.1 мкФ и электролитические конденсаторы SR 25 В 47 мкФ.
Для запуска преобразователя и для установки заданного тока используется асинхронный последовательный интерфейс. Исходя из этого, можно построить структуру программы, которая представлена на рисунке 5.2.
Блок SPI предназначен для передачи команд «старт», «стоп» параметров о требуемом токе стабилизации, а также принимает данные о токе, температуре и коде сигнала ошибки.
Блок глобальных переменных предназначен для хранения прочитанных и рассчитанных данных, а также необходимых для расчетов констант и массивов. Также в блоке содержится информация о текущем режиме работы источника.
Блок логики работы. Этот блок реализует работу платы индикации по заданному алгоритму. Он осуществляет функцию обработки всех команд и сообщений от остальных модулей. Блок клавиатуры предназначен для обработки портов МК, подключенных к кнопкам и передачи событий «СТАРТ/СТОП», «Больше», «Меньше» в блок «Логики работы».
Блок индикации предназначен для отображения информации о текущем значении тока, температуры, состояние силового блока. Осществляет управление соответствующими портами МК.
Диаграммы состояний блока логики работы платы индикации изображен на рисунке 5.3
При включении прибора программа переходит в состояние «Стоп силовой части» и считает, что инвертор находиться в выключенном состоянии. По нажатию кнопки «Больше/Меньше» осуществляет увеличение или уменьшение значения задатчика тока. При нажатии кнопки «Старт/Стоп» в МК блока преобразователя по синхронному интерфейсу передается установленный параметр задатчика тока и происходит запуск инвертора, при этом в блок индикации посылается сообщение «Работа». Блок «Логики работы» переходит в состояние «Работа силовой части»
Для обеспечения надежности предусмотрены три режима защиты:
- перегрев силового блока;
- превышение выходного тока;
- защита силовых ключей инвертора.
При срабатывании одной из защит МК преобразователя в блок индикации посылается сообщение «Ошибка» и блок «Логики работы» переходит в соответствующий режим.
При нажатии кнопки «Стоп» МК преобразователя посылается команда об остановке инвертора и блок переходит в состояние «Стоп силовой части»
При срабатывании защиты «Перегрев» происходит остановка инвертора и длится она до тех пор пока температура не спадет до заданного уровня.
При срабатывании защит «КЗ нагрузки» и «Защита инвертора» так же происходит остановка инвертора и переход в состояние «Стоп силовой части».
Каждые 5 мс. происходит опрос кнопок и ожидание нажатия кнопки, это сделано для того что бы устранить дребезг контактов.
В данном дипломном проекте используется динамическая индикация. Она осуществляется при помощи таймера-счетчика и называется «такт роботы индикации».
При включении прибора индицируется ток уставки задатчика. Когда приходит команда «Работа» от блока логики работы, то начинается индикация текущего выходного тока.
Можно изменить режим отображения, это делается нажатием кнопок «больше/меньше» при этом индицируется текущий ток или текущая температура силового блока.
При нажатии кнопки «Стоп» индицируется начальный ток уставки.
Источник питания собственных нужд должен обеспечить питание компонентов системы управления преобразователем от входного напряжения 70 В частотой 100 Гц. Система управления питается от напряжения пяти уровней: 12 В, переменное 12 В, дифференциальное 12 В, 5 В, 3,3 В. В таблице 6.1 указаны потребители и максимальный потребляемый ими ток.
Таблица 6.1 - Основные потребители энергии
Название | Потребляемый ток |
Vcc=12 В | |
Драйвера (IR2127, UCC37322) | |
Vcc=~12 В | |
Управление ключами (TV7, TV12) | |
Vcc =±12 В | |
Датчик тока (DA1) | |
Vcc =5 В | |
Микросхема развязки (DA8) | |
Микросхема интерфейса RS485 (DA4) | |
Vcc=3.3 В | |
Микроконтроллер (DD1) |
Заложим общую мощность, потребляемую от источника собственных нужд
.Источники малой мощности (до 150 Вт) обычно построены по схеме однотактного обратноходового преобразователя напряжения. В данной дипломной работе источник питания собственных нужд выполнен на микросхеме UC3842. Выбор данного источника питания обусловлен тем, что подобные преобразователи получили широкое распространение при проектировании микропроцессорных устройств и не раз проектировались в лаборатории группового проектного обучения (ГПО) силовых микропроцессорных устройств (СМУ). Рассмотрение других источников питания не осуществлялось. Микросхема UC3842 имеет минимальное напряжение для запуска микросхемы которое составляет 10 В, что для нас не мало важно. На рисунке 6.1 приведена типовая схема включения микросхемы UC3842 [19].
Микросхема UC3842 имеет все необходимые функциональные возможности для создания схем управления сетевыми импульсными источниками питания. Встроенные структурные элементы микросхемы обеспечивают её отключение при недопустимо низком входном напряжении и пусковом токе менее 1 мА. Прецизионный источник опорного напряжения тактирован для повышения точности на входе усилителя сигнала ошибки. ШИМ-компаратор контролирует также ограничение по току, а квазикомплиментарный выходной каскад рассчитан на значительные броски тока (как втекающего, так и вытекающего). Выходной каскад обеспечивает работу на нагрузку типа n-канального полевого транзистора с изолированным затвором и имеет низкий логический уровень напряжения в отключённом состоянии.
Схема источника питания приведена на рисунке 6.2.
Произведем расчет источника питания собственных нужд (ИПСН) приведенного на рисунке 6.2. Параметры ИПСН:
- минимальное входное напряжение
;- максимальное входное напряжение
;- активная мощность источника
;- частота преобразования
;- максимальная длительность импульса
;- максимальная длительность разряда
;- выходное напряжение
;