Смекни!
smekni.com

Расчет структурно-алгоритмической схемы системы автоматического регулирования (стр. 1 из 2)

Московский государственный текстильный университет им. А.Н. Косыгина

Кафедра автоматики и промышленной электроники

Курсовая работа

по дисциплине: «Теория автоматического управления»

на тему: «Расчет структурно-алгоритмической схемы системы автоматического регулирования»

Выполнил: студент гр. 14ВД-06

Кириллов М.В.

Принял: Ермолаев Ю.М.

Москва, 2011 г.

Перечень подлежащих разработке вопросов (содержание расчетно-пояснительной записки)

Математические модели, используемые при выполнении курсовой работы

1. По заданным математическим моделям получить структурно-алгоритмическую схему системы автоматического регулирования

2. Определить передаточные функции разомкнутой системы Y(p) / G(p), замкнутой системы Y(p) / G(p), Y(p) / F(p), E(p) / G(p), E(p) / F(p)

3. Для заданных исходных данных построить область устойчивости системы в плоскости параметров регулятора

4. Для заданной допустимой ошибки регулирования 5% определить значение Kp регулятора, при условии, что регулятор обеспечивает «П» - закон регулирования

5. Для значений параметров регулятора, выбранных произвольно из области устойчивости системы, построить кривые Михайлова и Найквиста

6. Повторить п. 5 задания для значений параметров регулятора, выбранных из области неустойчивой системы

7. Рассчитать настройки регулятора, обеспечивающие минимальное значение интегральной оценки качества

8. Построить переходные характеристики системы по задающему и возмущающему воздействию для значений параметров регулятора выбранных по пп. 5 и 7

9. Определить показания качества системы

Математические модели, используемые при выполнении курсовой работы

Исходные данные: K1 = 2; K2 = 0,7; T1 = 1; T2 = 0,5.

1. По заданным математическим моделям получить структурно-алгоритмическую схему системы автоматического регулирования

а)

- уравнение сумматора

б)

- уравнение регулятора

Применяя операторный метод Лапласа, получим:

;

в)

- апериодическое звено на выходе

Применяя операторный метод Лапласа, получим:

;

г)

- апериодическое звено (инерционное) на выходе

Применяя операторный метод Лапласа, получим:

Из данных нам математических моделей составим общую структурно-алгоритмическую схему системы автоматического регулирования:


2. Определить передаточные функции разомкнутой системы Y(p) / G(p), замкнутой системы Y(p) / G(p), Y(p) / F(p), E(p) / G(p), E(p) / F(p)

Передаточная функция – это отношение изображений по Лапласу выходной величины к входной при нулевых начальных условиях.

Передаточная функция разомкнутой системы:

Передаточная функция для замкнутой системы:


3. Для заданных исходных данных построить область устойчивости системы в плоскости параметров регулятора

Чтобы получить характеристическое уравнение нашей системы, приравняем знаменатель передаточной функции

к нулю.

Система третьего порядка:

Представим:

a0 = 0,5Tp; a1 = 1,5Tp; a2 = Tp (1+1,4Kp); a3 = 1,4;

Используем критерии устойчивости Гурвица.

Необходимо и достаточно, чтобы выполнялись следующие условия:

1)

(все коэффициенты характеристического уравнения положительны);

2)

>

при равенстве а1а2=а0а3 система находится на границе устойчивости.

Система будет устойчива, если:


Тр>0;

По найденному графику функции

построим область устойчивости системы в плоскости параметров регулятора.

4. Для заданной допустимой ошибки регулирования 5% определить значение Кр регулятора, при условии, что регулятор обеспечивает «П» - закон регулирования

Структурная схема при использовании «П» - закона регулирования:


Еуст= 5 % = 0,05;

Wp = Kp;

G(p) = 1(t);

G(p) = g(t);

g(t) = A= 1;

G(p)=

;

5. Для значений параметров регулятора, выбранных произвольно из области устойчивости системы, построить кривые Михайлова и Найквиста

Выберем произвольно из области устойчивости системы параметры:

Тр=0,25; Кр=1;

Построим кривую Михайлова и Найквиста.

Кривая Михайлова

Характеристическое уравнение нашей системы:

Заменим p на

получим:

;


Кривая Найквиста

Строим при помощи MatLab 6.5;