Московский государственный текстильный университет им. А.Н. Косыгина
Кафедра автоматики и промышленной электроники
Курсовая работа
по дисциплине: «Теория автоматического управления»
на тему: «Расчет структурно-алгоритмической схемы системы автоматического регулирования»
Выполнил: студент гр. 14ВД-06
Кириллов М.В.
Принял: Ермолаев Ю.М.
Москва, 2011 г.
Перечень подлежащих разработке вопросов (содержание расчетно-пояснительной записки)
Математические модели, используемые при выполнении курсовой работы
1. По заданным математическим моделям получить структурно-алгоритмическую схему системы автоматического регулирования
2. Определить передаточные функции разомкнутой системы Y(p) / G(p), замкнутой системы Y(p) / G(p), Y(p) / F(p), E(p) / G(p), E(p) / F(p)
3. Для заданных исходных данных построить область устойчивости системы в плоскости параметров регулятора
4. Для заданной допустимой ошибки регулирования 5% определить значение Kp регулятора, при условии, что регулятор обеспечивает «П» - закон регулирования
5. Для значений параметров регулятора, выбранных произвольно из области устойчивости системы, построить кривые Михайлова и Найквиста
6. Повторить п. 5 задания для значений параметров регулятора, выбранных из области неустойчивой системы
7. Рассчитать настройки регулятора, обеспечивающие минимальное значение интегральной оценки качества
8. Построить переходные характеристики системы по задающему и возмущающему воздействию для значений параметров регулятора выбранных по пп. 5 и 7
9. Определить показания качества системы
Математические модели, используемые при выполнении курсовой работы
Исходные данные: K1 = 2; K2 = 0,7; T1 = 1; T2 = 0,5.
1. По заданным математическим моделям получить структурно-алгоритмическую схему системы автоматического регулирования
а)
- уравнение сумматораб)
- уравнение регулятораПрименяя операторный метод Лапласа, получим:
;в)
- апериодическое звено на выходеПрименяя операторный метод Лапласа, получим:
;г)
- апериодическое звено (инерционное) на выходеПрименяя операторный метод Лапласа, получим:
Из данных нам математических моделей составим общую структурно-алгоритмическую схему системы автоматического регулирования:
2. Определить передаточные функции разомкнутой системы Y(p) / G(p), замкнутой системы Y(p) / G(p), Y(p) / F(p), E(p) / G(p), E(p) / F(p)
Передаточная функция – это отношение изображений по Лапласу выходной величины к входной при нулевых начальных условиях.
Передаточная функция разомкнутой системы:
Передаточная функция для замкнутой системы:
3. Для заданных исходных данных построить область устойчивости системы в плоскости параметров регулятора
Чтобы получить характеристическое уравнение нашей системы, приравняем знаменатель передаточной функции
к нулю.Система третьего порядка:
Представим:
a0 = 0,5Tp; a1 = 1,5Tp; a2 = Tp (1+1,4Kp); a3 = 1,4;
Используем критерии устойчивости Гурвица.
Необходимо и достаточно, чтобы выполнялись следующие условия:
1)
(все коэффициенты характеристического уравнения положительны);2)
>при равенстве а1а2=а0а3 система находится на границе устойчивости.
Система будет устойчива, если:
Тр>0;
По найденному графику функции
построим область устойчивости системы в плоскости параметров регулятора.4. Для заданной допустимой ошибки регулирования 5% определить значение Кр регулятора, при условии, что регулятор обеспечивает «П» - закон регулирования
Структурная схема при использовании «П» - закона регулирования:
Еуст= 5 % = 0,05;
Wp = Kp;
G(p) = 1(t);
G(p) = g(t);
g(t) = A= 1;
G(p)=
;5. Для значений параметров регулятора, выбранных произвольно из области устойчивости системы, построить кривые Михайлова и Найквиста
Выберем произвольно из области устойчивости системы параметры:
Тр=0,25; Кр=1;
Построим кривую Михайлова и Найквиста.
Кривая Михайлова
Характеристическое уравнение нашей системы:
Заменим p на
получим: ;Кривая Найквиста
Строим при помощи MatLab 6.5;