Подставляя рассчитанные значения в формулу (1.3), получаем вторую математическую модель ОУ:
Для нахождения передаточной функции по методу Лукаса определяем следующие коэффициенты:
;Таким образом, получили третью передаточную функцию для возмущающего канала:
Находим погрешности аппроксимации по интегральному критерию:
Выше представленные расчёты показывают, что наименьшую погрешность аппроксимации даёт третья модель, следовательно, она наилучшим образом аппроксимирует экспериментальную характеристику.
В качестве показателя оптимальности АСР принимается минимум интеграла от квадрата ошибки системы при действии на объект наиболее тяжелого ступенчатого возмущения по регулирующему каналу (интегральный квадратичный критерий) с учетом добавочного ограничения на запас устойчивости системы, т.е.
. (2.1)Такой критерий допускает значительное перерегулирование
и увеличивает время регулирования, но он обеспечивает наименьшее максимальное динамическое отклонение регулируемой величины.При практических расчётах запас устойчивости удобно характеризовать показателем колебательность системы М, значение которого в САУ, имеющих интеграл в алгоритме управления, совпадает с максимумом амплитудно-частотной характеристики системы:
(2.2)где:
wр – резонансная частота, на которой Аз() имеет максимум.
Чтобы максимум не превышал некоторой заданной величины М, амплитудно-фазовая характеристика (АФХ) разомкнутой системы Wраз(j) не должна заходить внутрь «запретной» области ограниченной окружностью, центр uo и радиус Ro которой определяется через М формулами (2.3) и (2.4), (рис. 4):
Рис. 4. Определение центра и радиуса окружности, соответствующей заданному показателю колебательности М
Если же Wраз(j) касается указанной окружности, то это означает, что САУ находится на границе заданного запаса устойчивости.
На практике чаще всего принимают
. При этом в САУ перерегулирование g £ 30%, максимальное отклонение регулируемого параметра при внутренних возмущениях (возмущениях по регулирующему воздействию) не превышает 10%.С помощью программы «СС» рассчитываем и строим АФХ объекта по передаточной функции (1.5) (приложение 3). Результаты расчёта приведены в таблице 2:
Таблица 2
0 | 0,042 | 0,082 | 0,131 | 0,192 | 0,255 | 0,339 | 0,451 | 0,599 | 0,797 | |
А | 0,55 | 0,536 | 0,5 | 0,44 | 35 | 0,279 | 0,2 | 0,136 | 0,086 | 0,052 |
0 | -20 | -38,7 | -60 | -81,7 | -100,6 | -120,5 | -140,4 | -160 | -179,6 | |
0,797 | 1,06 | 1,409 | 2,059 | 3,009 | ||||||
А | 0,052 | 0,031 | 0,018 | 0,009 | 0,004 | |||||
-179,6 | -199,7 | -222 | -256,9 | -300,7 |
Также по передаточной функции (1.5) находим АЧХ, ФЧХ и
, которые находятся по комплексному коэффициенту усиления (2.5), который получается из передаточной функции путем замены р на .Рассчитаем ПИ-алгоритм управления, передаточная функция которого имеет вид:
, (3.1)а параметрами, подлежащими определению, являются коэффициент усиления Кр и постоянная интегрирования Ти, для этого используем графоаналитический метод.
1. По АФХ объекта Wобu-y (jω) строим семейство характеристик разомкнутой системы Wраз(jω) для Кр = 1 и нескольких фиксированных значений постоянной интегрирования Ти.
Для этого сначала строим несколько векторов характеристики объекта Wобu-y (jω), например, векторы
для частоты ω1, для ω2 и т.д. (приложение 3). К их концам надо пристроить векторы , ,…, , повернутые по отношению к векторам , ,…, на угол 90°. Длина векторов , ,…, выбирается из соотношения (где в числителе – длина вектора АФХ объекта для определённого значения частоты wi, которую можно измерить непосредственно в миллиметрах; в знаменателе – произведение указанной частоты на фиксированное значение Ти). Через полученные точки С1, С2,…, Сn проводим плавную кривую, которая является характеристикой Wраз1(jω) для выбранного значения Ти.Через полученные точки С1, С2,…, Сn проводим плавную кривую, которая является характеристикой Wраз1(jω) для выбранного значения Ти.
Аналогичные построения проводим для других значений Ти. В итоге получаем семейство характеристик Wраз (jω) для различных значений Ти.
2. Из начала координат проводим прямую ОЕ под углом b, характеризующим запас устойчивости по фазе и определяемым как:
. (3.2)3. С помощью циркуля вычерчиваем окружности с центром на отрицательной вещественной полуоси, каждая из которых касается одновременно как прямой ОЕ, так и одной из характеристик Wраз1(jω) (центр каждой окружности и ее радиус находим подбором).
4. Отношение требуемого радиуса R0, определяемого по формуле (2.3), к полученному в каждом отдельном случае значению ri показывает, во сколько раз нужно изменить единичный коэффициент передачи регулятора (Кр=1), чтобы каждая характеристика Wраз1(jω) касалась окружности с заданным М, т.е.
. (3.3)Для вычисления Кр. пред использована формула:
, (3.4)где:
Rо – радиус, определяемый по формуле (2.3);
r – радиус окружности, находящийся методом подбора;
Все результаты вычислений представлены в таблице 3:
Таблица 3
Кр | 2,44 | 3,2 | 4,1 | 4,8 |
Ти | 4 | 5 | 6 | 8 |
5. В результате в плоскости варьируемых параметров алгоритма Кр и Ти строится граница области заданного запаса устойчивости (приложение 3).
Максимум отношения Кр/Ти, определяющего оптимальную настройку регулятора при низкочастотных возмущениях, соответствует точке пересечения касательной с границей заданного запаса устойчивости, проведённой через начало координат.
Передаточная функция регулятора, после определения координат точки А (Кр.опт = 4,5 и Ти опт = 6,55), имеет вид: