Смекни!
smekni.com

Цифровая система передачи информации с импульсно-кодовой модуляцией (стр. 3 из 5)


5. РАСЧЕТ МОДУЛЯТОРА

Модулятор осуществляет модуляцию несущего гармонического колебания U(t) = Um0cos(2pf0t) сигналом, представляющим передаваемую кодовую последовательность. Согласно заданию на курсовую работу применяется фазовая модуляция.

Временные диаграммы передаваемых сигналов. Отсчеты дискретного сигнала поступают на вход кодера с некоторой периодичностью. За время одного периода необходимо передать 14 бит информации, поэтому тактовый интервал, приходящийся на один символ кода равен:

`=(
-
з)/4=(0,00001-0,000006)/4=0,000001

При фазовой модуляции сигналам «0» и «1» соответствуют противофазные элементы сигнала длительностью Т вида:


Канальная скорость Vk определяется как:

а частота несущего колебания:


Диаграмма исходного и промодулированного сигналов представлена на рис. 5 (На диаграмме модулированного сигнала несущая частота не совпадает с рассчитанной)

Рис. 5

Аналитическое выражение модулированного сигнала b(t) при ФМ записывается следующим образом:


Где

- разность фаз для двух позиций кода. Девиация фазы при этом

При вычислении корреляционной функции первичного сигнала воспользуемся формулой для модели стохастического дискретного источника синхронного двоичного сигнала:

График корреляционной функции первичного сигнала представлен на рис. 6

Рис. 6

Энергетический спектр модулирующего сигнала рассчитывается по теореме Винера-Хинчина как преобразование Фурье от корреляционной функции.

График энергетического спектра модулирующего сигнала представлен на рис.7

Рис. 7

Найдем энергетический спектр радиосигнала с ФМ Спектры сигналов двоичной ФМ легко найти, представив этот сигнал в виде суммы двух сигналов AM с разными фазами. При этом складываются и их энергетические спектры. Общая формула для вычисления ФМ радиосигнала:

График энергетического спектра ФМ радиосигнала изображен на рис. 8

Рис. 8


6. РАСЧЕТ КАНАЛА СВЯЗИ

Для того чтобы дать математическое описание канала, необходимо и достаточно указать пространство входных и выходных сигналов, а также некоторый оператор, характеризующий поведение сигнала в этом канале. Точное математическое описание любого канала обычно достаточно сложное, поэтому используют упрощенные модели. В данной работе используется канал с аддитивным гауссовским шумом.

Полученный в результате модуляции высокочастотный сигнал u(t) передается по каналу связи с постоянными параметрами и аддитивной помехой. Предполагается, что частотные характеристики канала выбраны таким образом, что сигнал в нем только затухает без искажений формы и временного рассеяния. С выхода такого канала на вход приемного устройства поступает смесь сигнала и шума.

где s(t)— полезный сигнал на выходе канала, связанный с переданным сигналом u(t) известными соотношениями, n(t)- аддитивная помеха, приведенная к выходу канала.

Аддитивная помеха n(t) представляет собой флуктуационный гауссовский шум с равномерным энергетическим спектром N0/2 (белый шум)

s(t) – полезный сигнал на выходе канала;

n(t) – аддитивный гауссовский шум (помеха) c энергетическим спектром N0/2, - белый шум s(t)= Кu(t - τ)= Кu(t)

гдеК - коэффициент передачи равный (l+1), (где l - последняя цифра номера студенческого билета), К=3+8=11;

τ – коэффициент запаздывания.

Часто τ можно не учитывать, что соответствует изменению начала отсчета времени на выходе канала

. Сигнал на выходе канала:

Z(t)= Кu(t)+n(t),

Найдем мощность шума на выходе канала связи. Шум в канале связи является белым, поэтому его спектральная плотность мощности на всех частотах одинаковая. Поэтому найдем мощность шума в полосе пропускания канала. Рассчитаем полосу частот отводимую на канал связи. Примем ее равной ширине спектра модулированного сигнала. Ширина спектра ФМ сигнала зависит от индекса модуляции, который рассчитывается по формуле:

m=∆ω/Ω,

Δω- девиация фазы. (при модуляции противоположными по знаку сигналами равна π), для нашего случая равна π/2.

Ω – частота модулирующего колебания, равная 1/Т (2π*420 кГц)

Рассчитанное значение m<<1, поэтому ширину спектра ФМ сигнала примем равной

Рассчитаем мощность шума на нагрузке в 1 Ом:

Рассчитаем мощность сигнала на выходе канала связи. Под «мощностью сигнала» в теории связи условно принято понимать мощность, выделяемую на резисторе с сопротивлением 1 Ом. В соответствии с этим определением средняя мощность сигнала S(t) на интервале времени Т рассчитывается по известной формуле как квадрат нормы сигнала. Для синусоидальных сигналов, которые используются в рассматриваемой системе, в результате интегрирования получается известное выражение

Pci = Usi2/2 , где i= 0; 1.

Здесь Usi есть амплитуда элемента сигнала si в приемнике, связанная с амплитудой переданного сигнала ui(t) коэффициентом передачи К. (Usi=KUm0)


Вычислим мощность сигнала: Среднюю мощность следует рассматривать в расчете на элемент сигнала:

Отношение сигнал-шум в канале связи рассчитывается как

Пропускная способность канала связи – это количество бит информации, которое канал способен передать за 1 секунду. Определим пропускную способность канала при помощи формулы Шеннона.


7. РАСЧЕТ ДЕМОДУЛЯТОРА

В демодуляторе осуществляется оптимальная когерентная обработка принимаемой смеси сигнала с шумом z(t), целью которой является решение о том, какой символ был передан. Но в данном случае не требуется восстанавливать форму исходного сигнала.

Критерии оптимальности - это условие максимума или минимума основного показателя качества приема, представляющего интерес для пользователя системы связи. Таковым при приеме дискретных сообщений является средняя вероятность ошибки (коэффициент ошибок). Критерий ее минимума (или, что то же самое, максимума вероятности правильного приема) называют критерием «идеального наблюдателя».

Алгоритм приема - это уже совокупность конкретных операций над принятой смесью, имеющая целью установить, какой именно из двух (0 или 1) возможных символов был передан.

Критерий максимального правдоподобия может быть выражен следующей функцией:

-отношение правдоподобия гипотезы о передаче 1 к гипотезе о передаче 0

-отношение правдоподобия гипотезы о передаче 0 к гипотезе о передаче 1

Алгоритм приема двоичных сигналов с фазовой модуляцией при когерентном приеме сводится к выражению:


Структура оптимального приемника для сигналов с ФМ показана на рис 9.

Рис. 9

При реализации демодулятора для когерентного приема возникают проблемы. В частности – проблема поддержания равенства фаз опорного генератора и приходящего напряжения. В практических схемах опорный сигнал формируется из принимаемого колебания. Для этого по принимаемому сигналу необходимо восстановить немодулированную гармоническую несущую. Однако на практике все схемы формирования опорного сигнала таковы, что возможно случайное изменение знака опорного сигнала. Это значит, что все «1» будут записаны как «0», а «0» как «1». Это будет продолжаться до тех пор, пока не произойдет процесс изменения фазы. Данное явление получило название обратной работы. Из-за него практическое внедрение систем с двоичной фазовой манипуляцией оказалось затруднительным. Возможность избавления от обратной работы – это переход к относительной фазовой манипуляции (ОФМ). В этом случае сообщение содержится не в абсолютном значении фазы элемента сигнала, а в разности фаз двух соседних символов.