Смекни!
smekni.com

Цифровая система передачи информации с импульсно-кодовой модуляцией (стр. 5 из 5)

Так как отклик системы не может появиться раньше входного воздействия, то для физической реализуемости импульсной характеристики необходимо и достаточно, чтобы:

- условие физической реализуемости импульсной характеристики.

ВЫВОДЫ

В ходе данной работы были исследованы основные принципы передачи информации с импульсно-кодовой модуляцией по каналу связи. Были изучены все необходимые приемы и процессы происходящие с сообщением от момента его выработки в источнике до прихода его к абоненту.

Источник сообщений представляет собой генератор случайного электрического сигнала с равномерным законом распределения и нулевым средним значением. Спектр сигнала сосредоточен в полосе частот от 0 до 15кГц.

Далее исходный непрерывный сигнал преобразуется в дискретный с частотой отсчетов 0,033мс (определяется в соответствии с теоремой Котельникова) и квантуется по уровням с дискретностью 0.1В на каждый уровень. Данный сигнал квантуется по 32 уровням, это значит, что для каждый отсчет может быть представлен числом от 0 до 31. При квантовании обычно производится «округление» амплитуды отсчета до целого числа уровней, поэтому происходит некоторое искажение исходного значения амплитуды сигнала – это явление носит название шума квантования. Мощность этого шума 0.83мВт. Источник сигнала работает с производительностью 75кбит/с, его энтропия равна 5бит на уровень.

Далее квантованный дискретный сигнал кодируется. Для обеспечения более высокой помехозащищенности сигнал кодируется избыточным кодом Хэмминга. Так как сигнал квантуется по 32 уровням, для его представления примитивным двоичным кодом требуется 5-разрядное число. Выбирается код Хэмминга: в нем информация представлена 7-разрядным кодовым словом, в котором 4 первых разряда являются носителями информации, а остальные 3 обеспечивают защиту от ошибок. Принимая это во внимание, разобьем передаваемое 5-значное двоичное число на два слова по 4 знака (добавляем нули в старшие разряды). После кодирования полученная комбинация выглядит так: 00000001110100.

Для эффективной передачи сигнала по каналу связи необходимо его спектр перенести в высокочастотную область - промодулировать сигнал. В качестве модуляции используется фазовая манипуляция с частотой несущего колебания 42МГц и разностью фаз для сигналов 0 и 1 равной π/2.

Модулированный сигнал поступает в канал связи, в котором присутствует аддитивный белый гауссовский шум со спектральной плотностью мощности 5,8∙10-7 В2 / Гц. Коэффициент передачи канала связи равен 4. Ширина полосы пропускания канала определяется шириной спектра ФМ сигнала и равна 840 кГц. Мощность шума в канале равна 0,4872 Вт. Отношение сигнал/шум в канале равно16,4. Пропускная способность канала связи 1,020Мбит/с.

Из канала связи на приемной стороне сигнал попадает на демодулятор – по сути устройство, которое решает, какой символ был передан 0 или 1. Демодулятор собран по схеме оптимального приемника для ФМ сигнала. Средняя вероятность ошибки 25%. Это связано с малым отношением сигнал/шум в канале связи.

Далее сигнал попадает на декодирующее устройство, которое преобразует закодированный сигнал в дискретные отсчеты. Если сигнал был принят с ошибкой, то в декодере может произойти ее исправление. С помощью анализа вектора-синдрома можно точно определить в каком разряде слова появилась ошибка и исправить ее, проинвертировав символ в этом разряде. Если в одном кодовом слове было две ошибки – то произойдет только их обнаружение. Исправить более одной ошибки код Хэмминга не в состоянии.

После декодирования дискретный сигнал поступает на фильтр-восстановитель. Это идеальный ФНЧ с полосой пропускания 15151Гц. С помощью этого ФНЧ можно восстановить исходный непрерывный сигнал из дискретных отсчетов. Частотные характеристики физически реализуемых фильтров отличаются от идеальных. В ходе работы была рассчитана импульсная характеристика реального ФНЧ. Она отличается от идеальной с погрешностью 52%.



СПИСОК ЛИТЕРАТУРЫ

Теория электрической связи /под ред. Д.Д. Кловского. - Москва, «Радио и связь», 1998.

Баскаков С.И. Радиотехнические цепи и сигналы. – Москва, «Высшая школа» , 1983.

Кловский Д.Д. Теория передачи сигналов. – Москва, «Связь», 1973.

Васильев К.К., Новосельцев Л.Я., Смирнов В.Н. Основы теории помехоустойчивых кодов – учебное пособие, УлГТУ, 2000.

Романов Б.Н. Теория электрической связи. Методические указания к курсовой работе. – Ульяновск, 2002.

Васильев К.К. Методы обработки сигналов – учебное пособие, УлГТУ, 2001.

Лекции по ТЭС.