Смекни!
smekni.com

Нелинейные эффекты вынужденного неупругого рассеивания световой волны в волокне (стр. 1 из 2)

Нелинейные эффекты вынужденного неупругого рассеивания световой волны в волокне

Вынужденное рассеивание Бриллюэна (SBSStimulatedBrillouinScattering) устанавливает верхний предел на уровень оптической мощности, который может быть передан по оптическому волокну. При достаточно больших передаваемых мощностях могут возникнуть нелинейные процессы, изменяющие параметры материала. В результате возможно появление вынужденного рассеивание Мандельштама – Бриллюэна. Рассеяние Мандельштама – Бриллюэна (часто называют вынужденное рассеивание Бриллюэна) возникает за счёт колебаний молекулярных составляющих в основном на микронеоднородностях.

При превышении определенного уровня оптической мощности, именуемого порогом SBS, в ОВ возникает акустическая волна, под воздействием которой меняется величина индекса рефракции n. Изменения n вызывают рассеяние света, приводя к дополнительной генерации акустических волн. Таким образом, в случае с SBS в процесс вовлекаются акустические фононы – молекулярные вибрации. Происходит нелинейное взаимодействие интенсивной волны света, распространяющейся в прямом направлении, с первоначально слабой волной рассеянного назад света, а также с молекулярными колебаниями волокна или, ещё можно сказать, с тепловой упругой волной в кварцевой среде (за счёт явления электрострикции - изменение (сжатие) объёма диэлектрика под действием электрического поля). В результате такого взаимодействия в волокне возникают продольные волны показателя преломления, движущиеся со скоростью звука (акустические фононы) в сердцевине волокна. Часть энергии распространяющегося в прямом направлении сигнала, скажем с частотой f1, рассеивается на волнах показателя преломления назад со сдвигом частоты f2. Эта вторая волна называется волной Стокса- Stokes.

В металлах теплопроводность обусловлена, в основном, передачей энергии электронами проводимости. В кристаллических диэлектриках основную роль играет передача энергии связанных колебаний узлов решётки. В первом приближении этот процесс можно представить в виде распространения в кристалле набора гармонических упругих волн, имеющих различные частоты υ.

Электрон, движущийся в кристалле и взаимодействующий с другим электроном посредством решётки, переводит её в возбуждённое состояние. При переходе решётки в основное состояние излучается квант энергии звуковой частоты – фонон, который поглощается другим электроном.

Упругие волны в кристалле имеют квантовые свойства, проявляющиеся в том, что существует наименьшая порция – квант энергии волны с частотой υ. Это позволяет сопоставить волне с частотой υ квазичастицы – фононы, распространению которых со скоростью звука vсоответствует звуковая волна.

Фонон обладает энергией

υ, (1)

где h– постоянная Планка;

υ – частота упругих волн.

Таким образом, подобно тому, как квантование электромагнитного поля приводит к фотонам, квантование звукового поля приводит к фононам.

В процессе нелинейного рассеивания энергия передаётся от одной световой волны f1 к другой смещённой волне с более низкой частотой f2 (или низкой энергией), а потерянная энергия поглощается молекулярными колебаниями или фононами среды. При этом частотный сдвиг оптической несущей равен примерно 10…15 ГГц.

Следует отметить, что взаимодействие при

имеет место в очень узкой полосе частот
. Но если в световодах имеются неоднородности в виде изгибов, сжатия или растяжения, то спектр SBS может достигнуть 100…500 МГц. Этот эффект используется в бриллюэновской рефлектометрии, предназначенной для обнаружения механических воздействий на оптический кабель.

Явление нелинейного рассеяния возрастает с увеличением входной мощности и длины линии связи. Влияние нелинейных явлений растёт также с увеличением интенсивности света в волокне, которая при заданной мощности обратно пропорциональна площади сердцевины.

Таким образом, при превышении некоторого порога мощности нелинейные процессы приводят к переходу мощности первичных волн в излучение других волн. Рассеяние Бриллюэна в основном направлено в сторону, противоположную распространению электромагнитной энергии (рис. 1).

Отметим, что при малых оптических мощностях (до порога SBS см. рисунок 2) отраженная световая волна увеличивается прямо пропорционально уровню подводимой оптической мощности, то есть подчиняется Бриллюэновскому и Рэлеевскому законам рассеяния, и отличается друг от друга на постоянную величину, определяемую законом рассеяния Бриллюэна-Мандельштама (в основном зависит от эффективной площади ядра ОВ – Аэфф для данного материала). И только после превышения порога SBS наступает лавинный процесс увеличения мощности отраженной волны.

Типовое значение порога SBS для линии протяженностью в 10 км составляет 6…10 дБм. Выше этого уровня наблюдается значительное увеличение потерь ОВ, зависящих от уровня вводимой оптической мощности.


Рисунок 1 - Рассеяние Бриллюэна

Рисунок 2 – Порог SBS

Появляющаяся акустическая волна по своей природе является гиперзвуковой, и ее частотный спектр может располагаться до 10…13 ТГц (1013 Гц). Так, для λ=1550 нм скорость акустической волны в кварцевом ОВ составляет νа≈5,8 мм/мкс и Бриллюэновское частотное смещение fБ≈11 ГГц (~0,1 нм). Часто, для лучшего восприятия физики процесса, частотное Бриллюэновское смещение сравнивают с модуляцией светового потока акустической гиперзвуковой волной или эффектом Доплера. Графическое представление Бриллюэновского смещения приведено на рисунке 3. Выражение для пороговой мощности SBS PSBS записывается в виде:

рассеивание бриллюэн волокно импульс


(2)

где в – числовое значение между 1 и 2, зависящее от поляризационного состояния волны;

gB≈4,6*10-11 м/Вт – SBS усилительный коэффициент (зависит от типа ОВ);

ΔνLS– линейная (спектральная) ширина полосы лазерного источника;

ΔνВW≈20 МГц (на 1550 нм) – SBS полоса взаимодействия.

Рисунок 3 – Бриллюэновское смещение

Эффективная длина ОВ записывается в удобном традиционном логарифмическом виде:

(3)

Из выражения (1) видно, что порог SBS зависит от спектральной ширины лазерного источника колебаний. Выражение (1) для наихудшего случая (в = 1) при Lэфф=20 км (типовая усредненная величина) и эффективном диаметре модового пятна ОВ в 9,2 мкм может быть записано в удобном логарифмическом виде:


(4)

В результате Бриллюэновского рассеяния помимо эффекта снижения полезной мощности возникают и шумы (повышается относительная интенсивность шума – RIN), ухудшающие характеристики BER (вероятность возникновения ошибки). Всякое использование оптических усилителей понижает порог SBS. Порог SBS для системы PSBS.N, состоящей из N оптических усилителей, определяется простой зависимостью:

(5)

Обращаясь к (1) можно видеть, что порог SBS зависит от длины ОВ в ярко выраженной форме (рисунок 4). Это объясняется не только обратно-пропорциональной зависимостью порога SBS от эффективной длины ОВ, но и самой ее экспоненциальной зависимостью от физической длины ОВ (см. выражение 2). Для случая передачи импульсных сигналов важно отметить, что чем короче длина импульса, тем больше энергии необходимо для того, чтобы наступило Бриллюэновское рассеяние и, таким образом, тем меньше вероятность проявления этого эффекта при высоких скоростях передачи данных (рисунок 5).

Рисунок 4 – Зависимость порога SBS от параметров волокна


Рисунок 5 - Зависимость порога SBS от длительности импульса

Вынужденное рамановское рассеивание (SRS – Stimulated Raman Scattering) или, как ещё его называют, вынужденное комбинационное рассеивание (ВКР), – также нелинейный эффект, который подобно бриллюэновскому рассеиванию может использоваться для преобразования части энергии из мощной волны накачки в слабую сигнальную волну. SRS по своему характеру проявления близко к SBS, но вызывается другими физическими явлениями.

Физическая причина явления вынужденного рассеивание Рамана состоит в том, что под действием света большой интенсивности (когда проходящая в нём оптическая мощность достигает некоторого порога) могут быть случаи, когда молекулы поглощают часть энергии проходящего излучения (часть энергии каждого фотона). В результате, если фотон имел частоту f1, то после столкновения с молекулой и передачи ей части энергии энергия фотона уменьшается. Так как энергия фотона равна E=hf1, где h – постоянная Планка, то уменьшается множитель f1, то есть частота излучения. Таким образом, после прохождения через такую среду излучение будет иметь две частоты f1 и f1-Δf. Вторая составляющая с более низкой частотой (стоксова компонента) будет заметной тогда, когда энергия исходного излучения достигает упомянутого выше порога, то есть когда будет достаточно большое количество фотонов. По определению Рамановское рассеяние - нелинейный эффект – спонтанное комбинационное рассеяние, которое связано с рассеянием света на колебаниях поляризованных молекул волокна (оптические фононы) под действием света большой интенсивности.