Смекни!
smekni.com

Разработка электрической структурной, функциональной, принципиальной схем учебного комплекса по интерфейсам ввода-вывода (стр. 3 из 5)

Узел сброса позволяет вернуть всю лабораторную установку в исходное, то есть в нулевое состояние. Основные узлы лабораторной установки имеют входы, возвращающие их в исходное состояние. Это вызвано несколькими причинами:

- Ошибка оператора при проведении исследований.

- Сброс системы при завершении работы.

- Сброс системы при обнаружении неисправностей в ППИ.

В состав набора расширительных модулей при необходимости могут быть включены самостоятельно разработанные устройства сопряжения с различными объектами. Это позволяет выполнить ряд лабораторных работ по изучению программного и схемотехнического обеспечения специализированных узлов.

В силу универсальности нового варианта базового оборудования учебной лабораторной установки она может одинаково эффективно применяться как в учебном процессе, так и при проведении научно-исследовательских и опытно-конструкторских работ.

В результате проведенного анализа, существующих схем лабораторных установок для исследования режимов работы ППИ, следует:

- Существующие типы лабораторных установок имеют универсальную конструкцию.

- На основе проведённого анализа структурных схем лабораторных установок универсальной конструкции, разработана лабораторная установка, которая удовлетворяет предъявленным техническим требованиям к лабораторным установкам.

- Данный учебный комплекс должен содержать в своем составе набор блоков, позволяющий ей работать в автоматизированном и ручном режимах, а так же позволять выполнять лабораторные работы с определенным набором команд.

В разработанной структурной схеме центровым элементом является блок ППИ, являющегося основой структурной схемы. В этом блоке ППИ функционирует постоянно. Расположение блока аргументируется тем, что цель работы заключается в исследовании ППИ.

2.2 Разработка схемы электрической функциональной учебного комплекса по интерфейсам ввода-вывода

Состав структурной схемы назначение составляющих структурную схему блоков позволяет разработать функциональную схему учебного комплекса. Функционально учебный комплекс можно разбить на два блока:

- устройство для исследования режимов функционирования параллельного интерфейса (первый блок);

- устройство для исследования режимов функционирования последовательного интерфейса (второй блок).

Из структурной схемы следует, что основа структурной схемы является устройства для исследования режимов функционирования параллельного интерфейса является блок параллельный периферийный адаптер (ППА), в котором он функционирует постоянно.

В УМПК580 основой модуля является БИС параллельного периферийного адаптера (ППА). Каналы ППА подключены к схемам индикации и наборным полям через регистры и буфер. Это позволяет отключить их с помощью переключателя и использовать каналы для сопряжения микро-ЭВМ с устройствами ввода-вывода (УВВ). Функциональная схема данного блока приведена на (рисунке 2.5).

Иной подход к этому блоку осуществлен в УМПК1810. Блок параллельного интерфейса, представленный на (рисунке 6), собран на основе БИС КР580ВВ55.

Для усиления его сигналов используются два буфера и регистр. Схема позволяет пользователю применять каналы А и Б как для ввода, так и для вывода информации.

Проведя анализ первого блока, следует вывод, что в нем учебного для осуществления исследований режимов работ периферийного

адаптера достаточно подключить периферийный адаптер через буферы, которые имеют три состояния. Это вызвано тем, что даётся возможность изменять загружаемость адаптера. При необходимости буферный усилитель отключает канал, неиспользуемый в работе, тем самым разгружает общую шину и увеличивает быстродействие устройства.

Рисунок 2.5- Функциональная электрическая схема блока ППА УПМК580

Рисунок 2.6- Функциональная электрическая схема блока параллельного интерфейса УМПК 1810

При работе первого блока в автоматизированном режиме программы на выполнение записаны в постоянном запоминающем устройстве в блоке ПЗУ.

В УМПК580 блок запоминающих устройств, представленный на (рисунке 2.7) содержит: ПЗУ, буфер и схему дешифрации адреса (СхДА).

Дешифратор адреса формирует сигналы выборки ПЗУ. При обращении к ячейкам памяти СхДА выдает сигнал, открывающий буфер. При замыкании переключателя SA можно запретить работу ПЗУ, например для изучения методов отыскания неисправностей или для подключения внешних ЗУ.

Учитывая специфику работы разрабатываемого устройства, следует, что состав блока ПЗУ будет включать в себя только схему ПЗУ и сигнал выборки от блока ТГиС, так как нет необходимости производить выборку программ. Программы считываются из ОЗУ последовательно, в порядке, установленном при записи в ПЗУ. В состав блока ТГиС входит тактовый генератор и схема одновибратора. Состав схемы тактового генератора входит два элемента ИЛИ-НЕ, которые связывают кварц ZQ1 с 4-разрядным двоичным счетчиком.

Соединение входов и выходов счетчика по определенной схеме позволяет иметь информацию о делении частоты кварца на 2, 4, 8 и 16.

При работе схемы в ручном режиме за синхросигнал отвечает блок синхроимпульсов, входящий в блок ТГиС. За формирование синхроимпульса отвечает схема одновибратора. В схеме на двух ждущих мультивибраторах с возможностью перезапуска, свойственно, что в каждом мультивибраторе есть два входа запуска: с активным высоким уровнем и с активным низким уровнем.

Программа, вводимая в ППА, и результаты проведения работы отображаются на индикаторном табло в блоке устройств отображения. Данный блок состоит из цифрового индикатора и двух линеек светодиодов. Это связано с тем, что необходимо контролировать входную и выходную информацию ППА.

Блок индикации 1 предназначен для визуального отображения состояний входов логических схем. Светодиоды, содержащиеся в блоке индикации 1 обеих линеек, управляются интегральными микросхемами, содержащими инверторы с открытым коллекторным выходом. В соответствии с этим светодиод будет светиться в том случае, если на входе инвертора находится логическая “1”. Если на входе инвертора логический “0”, то светодиод не будет светиться. В целях снижения нагрузки на источник питания линейки светодиодов записываются независимо друг от друга, а в целях снижения нагрузки шины, светодиоды подключены через буферы, имеющие три состояния.

Рисунок 2.7- Функциональная электрическая схема блока ПЗУ УМПК580


Блок индикации 2 предназначен для отображения информации в виде цифр. Он состоит из полупроводникового сегментного индикатора. Данный индикатор также подсоединен к общей шине через буферы для разгрузки шины при не использовании индикатора.

Данный индикатор может не использоваться при ручном режиме работы.

За работой индикаторного табло следит блок контроллеров устройства отображения. Данный блок включает в себя регистр с восемью тактируемыми триггерами, так как в цифровом табло восемь входов, и восемью сопротивлениями на выходе для ограничения тока.

Схема сброса представляет собой диодную схему срабатывания при включении питания. При этом вырабатывается сигнал, который приводит схему в исходное состояние.

Формирователь отдельных команд представляет собой набор переключателей и схему формирования сигналов без дребезга.

Формирователи сигналов без дребезга предназначены для формирования "чистых" положительных и отрицательных перепадов напряжения.

2.3 Выбор элементной базы

При разработке микропроцессорных устройств и периферийного оборудования ЭВМ необходимо выбрать ИМС определенных серий, которые бы наиболее полно удовлетворяли требованиям, предъявляемым к разрабатываемому устройству. Удачное применение при оценке качества выбранной серии микросхем нашла методика оценки и выбора ИМС по минимальному критерию качества.

Уровень миниатюризации является количественной мерой совокупности технологических решений, направленных на эффективное использование объема, массы и потребляемой аппаратурой энергией при обеспечении характеристик, определяющих пригодность ее применения заданному назначению.

Уровень миниатюризации РЭА являются:

- Соответствие современному техническому уровню микроэлектронных изделий.

- Соответствие применяемых в РЭА изделий современному уровню миниатюризации аппаратуры.

- Техническая совместимость других изделий электронной техники с интегральными микросхемами (ИМС).

Развитие микроэлектроники способствовало появлению малогабаритных, высоконадежных и экономичных вычислительных устройств на основе цифровых микросхем. Требование увеличения быстродействия и уменьшения мощности потребления вычислительных средств привело к созданию серий цифровых микросхем. Серия представляет собой комплект микросхем, имеющих единое конструктивно-технологическое исполнение. К таким сериям относятся серии К155, К555.

За годы развития цифровых микросхем базовые электронные ключи развивались в следующей последовательности:

- Интегральная инжекторная логика (ИИЛ).

- Резисторно-транзисторная логика (РТЛ).

- Резисторно-емкостная транзисторная логика (РЕТЛ).

- Диодно-транзисторная логика (ДТЛ).

- Транзисторно-транзисторная логика (ТТЛ).

- Эмиттерно-связанная логика (ЭСЛ).

- Транзисторно-транзисторная логика с диодами Шоттки (ТТЛШ).

Проанализировав существующие функциональные узлы различных устройств показал, что:

- Для создания функциональной схемы лабораторного оборудования следует опираться на структурную схему устройства. Каждый блок структурной схемы должен быть разбит на функционально-законченные узлы. Функциональная схема в себя включает: блок ПИ, блок ПЗУ, блок выборки программ, тактовый генератор, схему одновибратора, индикаторное табло и линейки светодиодов, диодную схему сброса, формирователь сигналов без дребезга.