Введение
В настоящие время на всех участках первичной сети взаимоувязанной сети связи (местной, внутризоновой и магистральной) еще используются аналоговые системы передачи (АСП), работающие по металлическим кабелям связи (К-60П по кабелю типа МКС- 4×4×1,2; К-300 по кабелю МКТ-4; К-1920П и К-3600 по кабелю МК-4 и т.д.). Информационно - телекоммуникационный комплекс России формируется с учетом его интеграции в глобальную и европейскую информационные инфраструктуры. Мировой практикой установлено, что непременным условием для этого является наличие в стране развитой и взаимоувязанной цифровой сети.
На взаимоувязанной сети связи (ВСС) России, как и в большинстве развитых стран, принят и реализуется курс на цифровизацию сети связи. Поэтому возникает необходимость реконструкции существующих участков сети с АСП. Однако предстоит длительный период сосуществования на сети аналоговой и цифровой техники связи. Значительное число соединений будет устанавливаться с использование обоих видов техники связи. Для того чтобы в этих условиях обеспечить заданные характеристики каналов и трактов, принципы проектирования цифровых систем передачи (ЦСП) и АСП должны быть совместимы. Это в первую очередь касается структуры номинальных эталонных цепей, норм на суммарную мощность помех, возможности совместной работы на сети и т.п.
Основными типами отечественных ЦСП, применяемыми при реконструкции, являются ЦСП типа ИКМ-120, ИКМ-480С (симметричный кабель) и ИКМ-480 (коаксиальный кабель). Магистрали с АСП типа К-1920 и К-3600 реконструкции не подлежат и в перспективе будут заменены волоконно-оптическими системами передачи.
Использование цифровых систем передачи объясняется существенными достоинствами передачи: высокой помехоустойчивостью, слабой зависимостью качества передачи от длины линии связи, стабильностью электрических параметров каналов связи, эффективностью использования пропускной способности при передаче дискретных сообщений и др.
Рост потребности в услугах электросвязи (ЭС) для различных сфер деятельности людей обусловил бурное развитие средств телекоммуникаций в стране. Организация новых цифровых трактов – задача, стоящая перед каждым оператором. Она обусловлена повсеместным строительством цифровых АТС, внедрением услуг передачи данных, развитием цифровых сетей с интеграцией служб, модернизацией сетей технологической связи. Решить ее можно тремя способами: путем строительства волоконно-оптических линий связи (ВОЛС), использования радиорелейных систем или с помощью цифровизации медных линий связи.
Научно-технический прогресс во многом определяется скоростью передачи информации и ее объемом. Возможность резкого увелечения объемов передаваемой информации наиболее полно реализуется в результате применения различных оптических систем передачи.
В мире достигнут огромный прогресс в развитии ВОЛС. В настоящее время волоконно-оптические кабели и системы передачи для них выпускаются многими странами мира. Их внедрение определено высокой помехоустойчивостью, широкой полосой пропускания сигналов, большими расстояниями передач, относительно низкой стоимостью каналов и другими факторами. Однако, строительство ВОЛС до сих пор остается дорогостоящим и оправдывает себя только в тех случаях, когда требуется передача потоков большой емкости. Применение радиорелейных систем бесспорно эффективно, особенно в ситуациях, когда между пунктами нет какой-либо иной среды передачи, за исключением радиоэфира, а прокладка кабеля не целесообразна по экономическим причинам. В большинстве же случаев в распоряжении оператора имеется уже существующая магистральная кабельная инфраструктура, которую можно использовать как среду передачи для организации новых цифровых трактов за счет свободных пар в кабеле или замены аналоговых систем передачи на цифровые.
На первых этапах создания цифровой сети в России предусматривалось построить внутризоновые и местные сети на основе импортных волоконно-оптических и радиорелейных систем передачи, а тысячи километров высококачественных кабелей с медными жилами, оснащенными аналоговыми системами передачи, предполагалось списать в утиль.
Дефолт 1998г. изменил эти намерения. Новейшие цифровые системы передачи оказались островками в море аналоговых систем передачи по медному кабелю. Аналоговые барьеры наглухо перекрывают потоки цифровой информации, и как следствие, катастрофически недоиспользуется «интеллект» цифровых систем коммутации и пропускная способность современных цифровых магистральных линий, загруженных фактически на 7-10%.
Необходим другой, реальный в создавшихся условиях путь создания цифровых внутризоновых и местных сетей связи.
Наиболее целесообразный, возможно, единственный способ решения этой проблемы - цифровизация существующей сети связи на медном кабеле путем постепенной замены аналоговых систем передачи, которые занимают сегодня 80% зоновой сети страны, на цифровые.
Задачу цифровизации существующих медных линий связи (ЦМЛС) можно определить как организацию цифровых каналов путем применения ЦСП, использующих в качестве среды передачи пары существующего кабеля.
Поэтому одной из актуальных задач развития местных сетей ЭС является оптимальное использование медных кабельных линий, находящихся в эксплуатации. Уже достаточно долго в России и европейских странах дискутируется вопрос о “полной замене меди на оптику”. Какая же истина открылась в итоге дискуссии? Как обычно, очень простая - технологии хDSL, обеспечивающие передачу высокоскоростных цифровых потоков по существующим сегодня кабельным линиям.
Наиболее распространенной в настоящее время технологией в ряду DSL является высокоскоростная цифровая абонентская линия HDSL. Технология HDSL обеспечивает полный дуплексный обмен на скорости 2048 Мбит/с. Для передачи используются две или три кабельных пары.
Ряд DSL-технологий, прежде всего HDSL, были разработаны и впервые внедрены в массовом масштабе не для решения проблем сетей доступа, но для замены устаревшего оборудования HDB3 (отечественный аналог – ИКМ-30). Объем внедрения оборудования HDSL составляет сотни тысяч линии только в США.
Одна из сфера применения DSL-технологий в России и странах СНГ– уплотнение межстанционных соединительных линий. Для этого все более и более широко используется оборудования HDSL. По данным НТЦ НАТЕКС в 1999г. для таких приложений приобреталось более 70% HDSL и MSDSL (скорость передачи 160…2320 кбит/с) оборудования. Практически сегодня можно утверждать, что инерция операторов по использованию “музейных экспонатов” сломлена, и при новом строительстве в оборудовании линейного тракта ИКМ- систем используются прогрессивные HDSL-технологий. Надо признать также, что массовой замены устаревших линейных трактов на основе ИКМ-30 в России и СНГ пока не проводится. Таким образом, эта замена, не избежная в будущем, является огромным потенциалом развития рынка DSL в России.
Типичное расстояние между городом и поселком (наиболее часто оборудование типа К-60 используется для связи областного и районного центров) может составлять 50…70 км. И в телефонной сети общего пользования (ТфОп), и в технологических сетях (вдоль железных дорог, нефте-газопроводов и т.д.), нередки кабельные линии длиной 100, 200 и более километров. Естественно, никто из европейских и американских разработчиков DSL- аппаратуры не рассчитывал на такие длины. Поэтому решение вопроса цифровизации и замены систем ИКМ и ЧРК полностью “на совести” отечественных фирм. Такие решения появились совсем недавно и уже активно внедряются. Некоторые из отечественных решений основаны на HDSL-технологиях, сильно модифицированных, однако, для данного специфического применения (система и технология MEGATRANS, НТЦ НАТЕКС). Некоторые основаны на кодировании HDB3, много десятилетий применявшегося в системах типа ИКМ-30, 120 и т.д. В недалеком будущем, вероятно, появятся и другие решения. Основаны они будут, без сомнения, на передовых DSL-технологиях. Емкость этого сегмента рынка специалисты НТЦ НАТЕКС оценивают в десятки тысяч линий. Если учесть, что каждая линия состоит из многих сегментов (имеет несколько регенераторов), то суммарная стоимость необходимого оборудования составит 500 млн. долларов. Это немало в масштабах сегодняшнего уровня внедрения DSL в России и СНГ.
Как отмечалось выше, одним из массовых приложений технологий DSL в России и СНГ может стать замена или модернизация аналоговых систем передачи, работающих на магистральных или городских кабелях. Множество такой аппаратуры (типа К-60) используется на внутризоновых направлениях. Для этих приложений были разработаны несколько специфических DSL-технологий. Одна из них имеет название MEGATRANS. В системе MEGATRANS применена уникальная технология, отличающаяся несимметричностью, CAP- модуляцией, регулируемым уровнем и адаптивной системой согласования с линией. Каждый их этих ключевых моментов в определенной комбинации с другими позволяет решить две основные проблемы – достичь заданной длины регенерационного участка ℓрег и обеспечить совместимость с существующими аналоговыми системами передачи.
Целью дипломного проекта является разработка электронного варианта методических указаний по курсовому проектированию для дисциплины «Многоканальные телекоммуникационные системы». В дипломном проекте рассмотрены вопросы реконструкции АСП с использованием ЦСП типа ИКМ-60, ИКМ-120 и т.п. и FlеxGainMEGATRANS. Приведена методика расчета помехозащищенности цифровой линии передачи, даны основные характеристики аппаратуры и кабельных линий связи.
1. Основные теоретические положения по электрическому расчету ЦСП
1.1 Размещение регенерационных пунктов
Для серийно выпускаемой аппаратуры ЦСП зоновой и магистральной сетей предусмотрены оконечные пункты, обслуживаемые регенерационные пункты и необслуживаемые регенерационные пункты. Расстояние между ОП и ОРП или ОРП и ОРП называется секцией дистанционного питания (ДП) и задается в паспортных данных системы передачи. При размещении ОРП следует руководиться следующими соображениями: расстояние ОРП-ОРП не должно превышать максимальной длины секции ДП; ОРП желательно располагать в населенных пунктах. Расстояние между ОП-НРП, НРП-НРП или ОРП-НРП называется длиной регенерационного участка.