Смекни!
smekni.com

Гаситель комутаційних завад (стр. 6 из 7)

7.8 Тепер визначимо середній час безвідмовної роботи:

Тср =

(7.7)Тср =
= 194590,3 годин.

7.9 Далі в методиці розрахунку потрібно визначити такий параметр, який би визначив, наскільки ймовірною може бути безвідмовна робота на протязі тривалого часу експлуатації. Цей параметр називається ймовірністю безвідмовної роботи (P(t)). Визначимо Р(t) на протязі деякого часового інтервалу:

P(t) =

,(7.5)

Де tp –деякий часовий інтервал, год.

P(t) = e -5,139 * 10 -6 * 1000 * 100% = 99,4%

Як бачимо, ймовірність роботи без жодної відмови на протязі 1000 годин складає 99,4%.

7.10 Визначаємо ймовірність безвідмовної роботи апарата з урахуванням зовнішніх факторів. Використовуємо для цього нормативні часові інтервали.

Тср = 100 годин:

P(t) =

* 100% = 99,94%;

Тср = 1000 годин:

P(t) =

* 100% = 99,48%;

Тср = 10000 годин:

P(t) =

* 100% = 94,99%;

Тср = 100000 годин:

P(t) =

* 100% = 59,81%;

7.11 За умовами методики розрахунку, результати обчислень із пункту 7.10 потрібно зобразити у графічному вигляді.


Отже, результати розрахунку надійності задовольняють технічні вимоги до пристрою.

Конструктивний розрахунок друкованої плати

Для кожного пристрою, ясна річ, повинна бути розроблена та виготовлена друкована плата. Друкована плата дозволяє зекономити від 10% до 80% вільного місця в середині корпусу пристрою при мінімальних витратах провідників.

У даному розділі буде проведено розрахунок площі друкованої плати, тип матеріалу та габарити елементів.

Щільність монтажу друкованої плати для пристрою вибираємо по 1-му класу. 1-й клас має такі значення:

- ширина провідників t = 0,75;

- відстань між провідником і контактними площадками b = 0,75;

- відстань від краю отвору до краю контактної площадки c = 0,3.

8.1Для початку розрахунку визначимо площу, необхідну під резистори:

S = D * l,(8.1)

де D – поперечний переріз металевого тримача, мм;

l–поздовжній розмір елемента (з урахуванням згибів виводів)

Оскільки ми маємо різнотипні та різноформенні резистори, то спочатку визначаємо площу для однотипних резисторів.

SR1,2,13 = 16 * 3 = 48 мм2

SR3,4,6,7,8,10,11,12 = 11 * 2 = 22 мм2

SR9 = 9 * 1,8 = 16,2мм2

Підстроювальний резистор R5 (СП3-19А), має циліндричну форму, тому для нього площа розраховується по іншій формулі:

S = πD2/2,(8.2)

де D– зовнішній діаметр корпусу, мм.

S =

= 62,344 мм2;

8.2 Визначаємо площу, необхідну під усі однотипні резистори:

SR = SR1 * N1 + SR3 * N2.(8.3)

SR1,2,13 = 48 * 3 = 144мм2;

SR3,4,6,7,8,10,11,12= 22 * 6 = 176мм2;

SR5 = 62,344 * 1 = 62,344 мм2

SR9 = 16,2 * 1 = 16,2 мм2.

8.3 Визначаємо загальну площу під усі резистори:

SR = 144 + 176 + 62,344 + 16,2 = 398,544 мм2.

Оскільки однотипні резистори були згруповані, то знову множити їх площу на кількість не потрібно.

8.4 Визначаємо необхідну площу під конденсатори.

Для конденсаторів із подовжньою формою площа визначається по формулі

S = L * B,(8.4)

де L – поздовжній розмір елемента, мм;

B – поперечний розмір елемента, мм.

Для конденсатора С5 площа дорівнює:

SС5= 11 * 5 = 55 мм2.

Для конденсатора С2:

SС2 = 6 * 3,5 = 21 мм2.

Для конденсатора C1:

SC1 = 22 * 7 = 154 мм2.

8.5 Визначаємо загальну площу всіх обчислених метало плівкових конденсаторів по формулі (8.3):

SC1,2,5 = 55 * 1 + 21 * 1 + 154 * 1 = 230 мм2.

8.6Для циліндричних конденсаторів площа визначається по формулі (8.2):

Для конденсатора CD263 (C3)площа буде рівною:

SC3 = π * 49/2 = 76,96 мм2.

Для конденсатораC4 площа дорівнює

SC4 = π * 16/2 = 25,132 мм2.

8.7 Визначаємо загальну площу для циліндричних конденсаторів:

SC3,4 = 76,96 * 1 + 25,132 * 1 = 102,092 мм2.

8.8 Визначаємо загальну площу для конденсаторів:

SC =230 + 102,092 = 332,092 мм2;Як бачимо, тут теж групування однотипних конденсаторів робить непотрібним множити значення площі на кількість. 8.9 Визначаємо необхідну площу під напівпровідникові діоди.

Оскільки діоди мають форму, схожу на описані раніше резистори, будемо їх обчислювати за аналогічними формулами. У даній схемі використано діоди одного типу – 1N4007, отже групування однотипних елементів тут не потрібне.

Обчислюємо необхідну площу для одного діода:

SVD1 = 10 * 4 = 40 мм2;

8.10Визначаємо площу під усі діоди:

SVD = 40 * 6 = 240 мм2;

8.11. Визначаємо площу для стабілітронів:

SVD5 = 17 * 11 = 187 мм2;

У схемі пристрою застосовано лише один стабілітрон, отже, площа вище розрахованого є загальною площею для даного типу елементів.

8.12 Визначаємо площу для транзисторів:

SVT1 = π * 62/2 = 56,548 мм2;

Площа під усі транзистори:

SVT = 56,548 * 2 = 113,096 мм2;

8.13 Площа під мікросхему:

SDD = 18 * 7 = 126 мм2;

Мікросхема одна, тому тут випадок, аналогічний із стабілітроном.

8.14 Площа під симістор:

SVS = 10 * 5 = 50 мм2.

8.15Для приєднання виводу елемента з друкованим провідником,навколо отвору виконують контактну площадку у вигляді кільця. Діаметр кільця визначаємо по формулі:

dкп = dотв+ 2b + c. (8.5)


Спочатку треба визначити діаметр отворів під виводи елементів по формулі:

d = dвив + 0,2...0,3,

де dвив– діаметр виводу елемента.

Діаметр отвору під виводи мікросхеми:

dDD1 = 0,35 + 0,3 = 0,65мм;

Під виводи діодів:

d1N4007 = 0,8 + 0,3 = 1,1 мм;

Під виводи транзисторів:

d = 0,35 + 0,3 = 0,65 мм;

Під виводи стабілітрона:

dАнод = 0,75 + 0,3 = 1,05 мм;

dКатод = 1 + 0,3 = 1,3 мм2;

Під виводи резисторів:

dR1,2,13 = 0,85 + 0,3 = 1,15 мм;

dR2-R12 = 0,4 + 0,3 = 0,7 мм;

Під виводи конденсаторів:

dC1,C5 = 0,8 + 0,3 = 1,1 мм;

dC2-C4 = 0,5 + 0,3 = 0,8 мм;

Під виводи симістора:

dVS = 0,8 + 0,3 = 1,1.мм.

Використовуючи отримані результати, визначаємо діаметр контактних площадок.

Для мікросхеми, транзисторів та резисторів R2-R12 це буде:

dкп = 0,65 + 1,8 = 2,45 мм;

Для конденсаторів С1, С5, симістора VS1, усіх діодів, резисторів R1, R2, R13, анодного виводу стабілітрона:

dкп = 1,1 + 1,8 = 2,9 мм;

Для катодного виводу стабілітрона:

dкп =1,3 + 1,8 =3,1 мм;

Для конденсаторів С2-С4:

dкп = 0,8 + 1,8 = 2,6 мм.

8.16 Визначаємо загальну площу на друкованій платі, яку займуть усі контактні площадкиоднотипних елементів. Для цього використовуємо формулу (8.4):

S= (πD2 /4) * N(8.6)

де D – діаметр контактної площадки для виводу елемента, N–кількість контактних площадок на платі.

SDD1, VT1-2, R2-12 = π * 2,45/4 = 1,924 мм2;

SC1, C5, VS1, VD1,2,3,4,5,6, R1-2, R13 = 2,9 * π/4 = 2,277 мм2;

SVD5 = 3,1 * π /4 = 2,434 мм2;

SC2-4 = 2,6 * π / 4 = 2,042 мм2;

Сумуємо отримані значення:

Sзаг = 1,942 + 2,277 + 2,434 + 2,042 * 85 = 739,075мм2.

8.17Обчислюємо загальну площу під усі елементи. Для цього додаємо раніше отримані результати:

S = 398,544 + 332,092 + 240 + 187 + 56,548 + 126 + 50 = 1389,636 мм2.

8.18Обчислюємо площу друкованої плати:

Sпл = Кз (Sел + Sпл);(8.7)


Кз - це коефіцієнт заповнення, константа, яку отримуємо із джерела інформації [5].

Sпл = 1,6 (1389,636 + 739,075) = 3405 мм2

Як матеріал для плати, вибираємо текстоліт розмірами 150×230мм.

Вибір та обґрунтування типу виробництва. Вибір типу технології виготовлення друкованої плати

Друкована плата розроблюваного пристрою є односторонньою. Тому застосовано хімічний метод для її виготовлення.

Хімічний метод виготовлення плати полягає у витравленні їдким розчином незахищених ділянок металевої фольги на поверхні текстолітової основи. У даному випадку як витравлюючий розчин використано мідний купорос. Як заготовку використовуємо склотекстолітову пластину розмірами, зазначеними в результаті конструктивного розрахунку. Далі буде описано послідовність виконання операцій для одержання друкованої плати.

1. Фольговану поверхню на платі очищаємо від забруднень, знежирюємо, сушимо при температурі + 30…40̊ С;

2.Наносимо створений раніше схематичний малюнок друкованих провідників на поверхню

Інструкція по ремонту та регулюванню

Зважаючи на те, що радіоелементам та їх схемам притаманний такий показник як інтенсивність відмов (про що свідчить розрахунок надійності), можна і потрібно сказати, що при нештатних режимах роботи (перевищене від допустимого навантаження, сильні стрибки напруги у мережі, несприятливі кліматичні умови, інтенсивна вібрація і т. д.) підвищується інтенсивність відмов окремих елементів. Особливо згубно впливає висока температура оточуючого середовища та перевантаження, так як в обох випадках із-за перегріву силового елемента пристрій може вийти з ладу. Крім того, для нормальної роботи пристрою потрібне регулювання для отримання бажаних характеристик.

Для ремонту та регулювання необхідний наступний комплект інструментів:

1. Комплект запасних деталей (на випадок необхідності заміни деяких складових), їх типи та номінали вказані у переліку елементів;

2. Робочий стіл СМ – 2;