Смекни!
smekni.com

Регистратор колебаний поверхности земли (стр. 2 из 2)

с – технологический коэффициент погрешности производства, мм.

диаметр контактной площадки для КР140УД1208

dкп = 0,85 + 1,1 + 0,1 =2,05 мм

диаметр контактной площадки для К561ЛЕ5

dкп = 0,9 + 1,1 + 0,1 = 2,1 мм

диаметр контактной площадки для К176ИЕ1

dкп = 0,5 +1,1 + 0,1 = 1,7 мм

диаметр контактной площадки для К561ИЕ16

dкп = 0,85+ 1,1 + 0,1 = 2,05 мм

диаметр контактной площадки для КС106А

dкп = 0,85 + 1,1 +0,1 = 2,05 мм

диаметр контактной площадки для МЛТ (0,125)

dкп = 0,85 + 1,1 +0,1 = 2,05 мм

диаметр контактной площадки для K50 – 16

dкп = 1,05 + 1,1 +0,1 = 2,25 мм

Площадь печатной платы рассчитывается по формуле

S = Sобщ * К + Sвсп.з ,

где Sобщ – общая площадь установленных на плате элементов, мм;

К – коэффициент площади размещения элементов;

Sвсп.з – площадь вспомогательных зон.

В соответствии с расчетным разделом площадь платы принимаем равной

Sп.п. = 1758 * 2 + 6 = 3522 мм2.

В соответствии с ГОСТ 1037 – 79 выбираем линейный размер 85 × 62.

4.2 Расчет надежности

Расчет надежности выполняется на этапе технического проекта, когда основные схемотехнические и конструктивные проблемы решены, но имеется возможность изменить режим работы элементов. Расчеты выполняются для периода нормальной эксплуатации, когда интенсивность отказов постоянна и отказы являются случайными и независимыми.

Порядок расчета надежности:

- элементы системы разбить на группы с одинаковыми интенсивностями отказов;

- посчитать число элементов в каждой группе;

- выписать из справочника значение l0i;

- определить коэффициенты режимов в зависимости от коэффициентов нагрузки и температуры;

- рассчитать значение lЭi с учетом коэффициентов;

- рассчитать значение lЭi • Ni;

- рассчитать интенсивность отказов всей системы lС;

- рассчитать среднюю наработку до первого отказа tcp;

- рассчитать вероятность безотказной работы P(t);

- построить график вероятности безотказной работы. Расчет интенсивности отказа каждой группы ЭРЭ производим по формуле

lЭ=l0*Кэ*Кр

где l0 - интенсивность отказов группы ЭРЭ без учета коэффициентов; Кэ — коэффициент эксплуатации; Кр - коэффициент режима.

Расчет интенсивности отказа каждой группы ИМС производим по формуле:

lЭ=l0*Кэ*Ксл

где l0 - интенсивность отказов группы ИМС без учета коэффициентов;

Кэ - коэффициент эксплуатации;

Ксл- коэффициент режима. Расчет интенсивности отказов всей системы производим по формуле:

где lэi- интенсивность отказов группы с учетом коэффициентов;

Ni – количество элементов в группе. Расчет средней наработки до первого отказа проводим по формуле:

tcp= l / l*c.


Таблица 1. Расчет надежности.

№ гр. Обозначение элементов Наименованиеэлементов Кол. Ni l0*1061/ч Режимы работы lэ 1061/ч lэiNi1061/ч
t°C Кн Кэ Кр Ксл
1 DA1 КР140УД1208 1 0,4 30 0,3 2,3 - 1,5 0,92 0,92
2 DD1- DD3 К561ЛЕ5 3 0,5 30 0,3 2,3 - 1,5 1,15 3,45
3 DD4 К176ИЕ1 1 0,5 30 0,3 2,3 - 1,5 1,15 1,15
4 DD5 К561ИЕ16 1 0,5 30 0,3 2,3 - 1,5 1,15 1,15
5 VD1 КС106А 1 2 30 0,3 2,3 0,25 - 1,15 1,15
6 R1…R16 МЛТ 16 0,06 30 0,3 2,3 0,35 - 0,048 0,7728
7 С1…С6 К50-16 6 0,5 30 0,3 2,3 0,6 - 0,69 4,14
Пайка - 126 0,01 30 0,3 2,3 - - 0,01 1,26

К = 13 – интенсивность отказов 1,26

lс = 13*10-6 1/ч

Тс = 1/lс = 1/(13/10-6)= 76923

Таблица 2. Расчет P(t)

t 0 7432 14665 28776 40350 60155 76923
P(t) 1 0,913 0,833 0,6948 0,594 0,4584 0,368

График вероятности безотказной работы.


5. Технологический раздел

5.1 Технология поверхностного монтажа

Развитием монтажно-сборочных работ на ПП является переход от монтажа компонентов с выводами в отверстия к поверхностному монтажу безвыводных компонентов в микрокорпусах или компонентов с планарными выводами. Его преимущества по сравнению с традиционным методом сводятся к следующим:

- снижение затрат на изготовление ПП из-за устранения операций сверления монтажных отверстий, их очистки, металлизации и контроля;

- исключение таких подготовительных операций при сборке, как выпрямление, формовка выводов;

- повышение надежности межсоединений;

Внедрение поверхностного монтажа связано с переводом всей элементной базы на новый вид исполнения, повышением требований к ПП, разработкой новых ТП и созданием необходимого количества производительного оборудования.

Групповые методы сборки и монтажа (пайка погружением).

Групповые методы сборки и монтажа разрабатываются для определенной совокупности сборочных единиц, имеющих одинаковые условия сборки, число точек крепления и характеризующихся общностью применяемых средств механизации и автоматизации. Разработка группового ТП в основном сводится к проектированию групповой техологической оснастки, созданию наладок для каждого изделия, входящего в классификационную группу, и установлению оптимальной последовательности запуска партий на сборку.

Групповые методы сборки и монтажа наиболее эффективны в условиях мелкосерийного и единичного производства. Они позволяют сократить число разрабатываемых процессов, внедрить высокопроизводительную автоматизированную технологическую оснастку и оборудование, сконцентрировать технологически однородные работы и применить групповые проточные многопредметные линии сборки.

Пайкой называется процесс соединения металлов твердом состоянии путем введения в зазор расплавленного припоя, взаимодействующего с основным металлом и образующего жидкую металлическую прослойку, кристаллизация которой приводит к образованию паяного шва. Паяные электрические соединения широко применяют при монтаже электронной аппаратуры из-за низкого и стабильного электрического сопротивления, универсальности, простоты автоматизации, контроля и ремонта. Однако этому методу присущи и существенные недостатки: высокая стоимость используемых цветных металлов и флюсов, длительное воздействие высоких температур, коррозийная активность остатков флюсов, выделение вредных веществ. Одним из распространенных методов групповой пайки является пайка погружением. При использовании этого вида пайки элементы на 2…4 секунды погружаются в расплавленный припой на глубину 0,4…0,6 ее толщины, что приводит к капиллярному течению припоя и заполнению им монтажных отверстий. Одновременное воздействие температуры на всю поверхность платы приводит к ее перегреву и термоудару. Это вызывает повышенное коробление ПП, что ограничивает их максимальный размер 150 мм с соотношением сторон 1 : 2. чтобы ограничить зону действия припоя на плату с монтажной стороны наносят специальную защитную маску, в которой предусмотрена отверстия под контактные площадки. С этой же целью температуру пайки выбирают более низкой, что также уменьшает потери припоя в процессе окисления. Продукты окисления скапливаются на поверхности, и перед каждой пайкой их удаляют металлическим скребком.

Наиболее совершенным способом реализации пайки погружением является пайка протягиванием, при которой ПП укладывается в держатель под углом около 5°, погружается в ванну и протягивается по зеркалу припоя. Впереди держателя имеется закрепленный скребок, который очищает поверхность зеркала. Создаются благоприятные условия для удаления флюса и излишков припоя. Время пайки протягиванием увеличивается до 10 секунд.

Высокое качество пайки обеспечивает способ погружения платы в заполненную сеткой ванну, которая превращается в капиллярный питатель. При соприкосновении платы с сеткой припой выдавливается через ее ячейки и под давлением капиллярного эффекта заходит в зазор между выводами и металлизированными отверстиями. При обратном движении ванны избыток припоя затягивается капиллярами сеточного набора, что предотвращает образование сосулек. Различие в длине выводов не сказывается на качестве пайки из-за гибкости сетки.


Заключение

Выполнение курсового проекта было проведено без отклонения от задания. Составлено описание схемы электрической принципиальной. Были приведены конструктивные особенности типовых элементов, сформулированы требования к проектированию печатной платы и рассчитаны площадь и габаритные размеры сторон печатной платы.

В расчетном разделе проделан расчет электрических и конструктивных параметров элементов печатной платы. Значение электрических параметров соответствуют ГОСТ 23751-86. Так же был произведен расчет технологичности и надёжности конструкции.

В курсовом проекте был разработан чертеж печатной платы, сборочный чертеж, составлена спецификация и разработана схема электрическая принципиальная.


Литература

1) ГОСТ 2.105-95. Общие требования к текстовым документам.

2) ГОСТ 10317-79. Платы печатные. Основные размеры.

3) ГОСТ 3.1104-81. Общие требования к технологическим документам.

4) ГОСТ 23751-86. Платы печатные. Основные параметры конструкции.

5) ГОСТ 2.417-91. Платы печатные. Правила выполнения чертежей.

6) Полупроводниковые приборы: Диоды, тиристоры, оптоэлектронные приборы. Справочник / А. В. Баюков, А. Б. Гитцевич, А. А. Зайцев и др.; Под общ. ред. Н. Н. Горюнова. – М.: Энэргоатомиздат, 1985г.

7) Резисторы: Справочник / В. В. Дубровский, Д. Н. Иванов, Н. Я. Пратусевич и др.; Под ред. В. И. Четверткова и В. М. Терехова. – М.: Радио и связь, 1991г.

8) А. П. Ненашев Конструирование радио электрических средств: Учеб. для радиотехнич. спец. вузов. – М. :В ысшая школа, 1990г

9) Янишн А.А. Теоретические основы конструирования, технологии и надежности. ЭВА Учебное пособие для Вузов М,: Радио и связь 1983 г.