У розділі проаналізовано вплив розроблених ВФ на якість вирішення задач картографування поверхні за допомогою РСА. Для цього було потрібно попередньо визначити місце ВФ в оптимальних і квазіоптимальних алгоритмах синтезування апертури. Показано, що за деякими обмеженнями алгоритм класичного синтезування може бути представлений у вигляді
де
| | |
а | а | а |
| | |
б | б | б |
Рис. 1. Вагові вікна Хеммінгаі | Рис. 2. Вагові вікна Чебишева з РБП –43 дБ і | Рис. 3. Вагові вікна Чебишева з РБП –43 дБ і |
У результаті аналізу виразу (1) визначено, що ВФ можна вводити в алгоритми роботи РСА таким чином:
а) перемножити з опорним сигналом
де
б) перемножити на функцію вікна і ЗС і опорний сигнал
в) перемножити на функцію вікна (1) ДС
г) перемножити на функцію вікна і АР бортової антени і опорний сигнал під знаком суми у (1). При цьому добуток функції вікна у функції
Оптимальними за методом максимуму правдоподібності будуть операції б і г.
При використанні модифікованого синтезування апертури оптимальний вихідний ефект у рамках методу максимуму правдоподібності може бути описаний за допомогою виразу
де
| (3) |
Методика введення вагових вікон при цьому залишається такою ж, як і раніше при аналізі класичного синтезу апертури.
В розділі наведені результати моделювання процесу картографування поверхні з використанням класичних і модифікованих РСА при застосуванні вагової обробки класичними та розробленими ВФ на основі АФ ЗС та АР реальних і синтезованих апертур (відповідно до операцій б і г). Для цього був розроблений алгоритм формування РЛЗ, який відповідає фізичній суті формування реальних РЛЗ.
На рис. 4 та 5 показані результати моделювання РЛЗ із використанням класичної та модифікованої РСА при однакових вихідних даних, а саме ЗС – сигнал з лінійною частотною модуляцією (коефіцієнт стиснення
На рис. 5 і 6 зверху вниз зображено: ФН РСА, первинне РЛЗ та його зріз по азимуту, фільтроване РЛЗ та його зріз по азимуту.
Узагалі під час моделювання використано 24 різні комбінації вагових вікон. Порівняння результатів обробки здійснювалося за критеріями середньомодульного (
| |
Рис. 4. Результат формування РЛЗз використанням класичного алгоритму | Рис. 5. Результат формування РЛЗз використанням модифікованого алгоритму |
У третьому розділі дисертаційної роботи досліджені якісні показники селекції повітряних і підповерхневих об’єктів у середовищах з високою проникною здатністю за допомогою трикоординатних багатопроменевих РТС із синтезом апертури. До таких середовищ, зокрема, відносяться льодові покриви Антарктиди, дослідження яких методами ДЗ виконувалися відповідно до НДР «Методи й технології дистанційного дослідження поверхневих і підповерхневих середовищ із підвищеною проникною здатністю для радіохвиль» Д 501-40/2006 (№Д/Р 0106U001067).
Показано, що застосування розроблених ВФ в алгоритмах підповерхневого картографування (ППК) чи селекції повітряних цілей (СПЦ) на фоні пасивних завад дозволяє підвищити ступінь виділення заданого середовища. Для оцінювання місця ВФ у трикоординатних багатопроменевих РСА необхідно було вирішити оптимізаційні задачі синтезу алгоритмів просторово-часової обробки сигналів, відбитих від поверхневого та підповерхневих середовищ, а також для випадку, коли верхній шар є завадовим.