Смекни!
smekni.com

Проектирование системы автоматического управления для технологического процесса сборки радиоэлектронных (стр. 1 из 3)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Харьковский национальный университет радиоэлектроники

Факультет

"Электронные аппараты"

Кафедра ТАПР

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОМУ ПРОЕКТУ

по дисциплине: "Основы автоматики"

на тему: "Проектирование САУ для технологического процесса сборки РЭА"

Харьков 2009

РЕФЕРАТ

Курсова робота: 19 с., 8 мал., 2 табл., 3 джерела.

Об'єкт дослідження – система стеження.

Ціль роботи - проектування системи стеження, що задовольняє заданим технічним умовам.

Метод дослідження - синтез, моделювання перехідних процесів у САК, розрахунок і дослідження послідовної коригувальної ланки.

Для розрахунку системи стеження необхідно: розробити функціональну та структурну схеми системи стеження; вибрати елементи схеми, розрахувати передаточні функції; побудувати ЛФЧХ нескоректованої системи, бажаної системи й послідовної коригувальної ланки; дослідити систему на стійкість; визначити показники якості отриманої системи

СИСТЕМА СТЕЖЕННЯ, СИСТЕМА АВТОМАТИЧНОГО КЕРУВАННЯ, САУ, ПЕРЕХІДНА ХАРАКТЕРИСТИКА, ПЕРЕДАТОЧНА ФУНКЦІЯ, ПЕРЕРЕГУЛЮВАННЯ, РЕГУЛЮВАННЯ, ЗАПАС СТІЙКОСТІ ПО ФАЗІ, ЗАПАС СТІЙКОСТІ ПО АМПЛІТУДІ, ЛАЧХ, ЛФЧХ послідовної коригувальної ЛАНКи.

СОДЕРЖАНИЕ

Введение

1. ПОРЯДОК РАСЧЕТА СИСТЕМЫ СЛЕЖЕНИЯ

1.1 Разработка функциональной схемы

1.2 Выбор исполнительного двигателя

1.3 Выбор усилителя мощности

2. СОСТАВЛЕНИЕ ПЕРЕДАТОЧНЫХ ФУНКЦИЙ ЭЛЕМЕНТОВ СИСТЕМЫ СЛЕЖЕНИЯ

2.1 Исполнительный двигатель

2.2 Электромашинный усилитель

2.3 Усилитель

2.4 Фазовый детектор

2.5 Измерительный прибор

2.6 Редуктор

3. РАСЧЕТ ПОСЛЕДОВАТЕЛЬНОГО НЕПРЕРЫВНОГО КОРЕКТИРУЮЩЕГО ЗВЕНА МЕТОДОМ ЛОГАРИФМИЧЕСКОЙ АМПЛИТУДНО-ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ

3.1 Проверка заданной системы слежения

3.2 Построение ЛАЧХ заданной (нескорректированной) системы

3.3 Построение желаемой ЛАЧХ

3.4 Построение запрещенной области

3.5 Расчет последовательного корректирующего звена

4. МОДЕЛИРОВАНИЕ СИСТЕМЫ СЛЕЖЕНИЯ С НЕПРЕРЫВНЫМ ПОСЛЕДОВАТЕЛЬНЫМ СКОРРЕКТИРОВАНЫМ ЗВЕНОМ

4.1 Моделирование переходных процессов в скорректированной САУ

Выводы

Перечень ссылок


ВВЕДЕНИЕ

Цель курсового проектирования – получение навыков расчета линейных, нелинейных и импульсных систем автоматического управления (САУ), предназначенных для автоматизации производственных процессов, а также для управления механизмами общепроизводственного назначения, проектирования систем слежения для автоматического регулирования; научиться синтезировать промышленные регуляторы, моделировать переходные процессы в САУ. Задачи курсового проекта – синтезирование, моделирование переходных процессов в САУ.

Проектирование следящей системы охватывает широкий круг вопросов - от математической постановки задачи до рабочих чертежей и их окончательной отработки по результатам испытаний опытных образцов. Поэтому, естественно, в многочисленных исследованиях, связанных с проектированием систем различного назначения, рассматриваются лишь отдельные аспекты этой большой проблемы.

Система слежения такого типа широко используется для дистанционного регулирования разными механизмами, а также при построении автоматических систем регулирования в разных отраслях промышленности. Использование систем слежения для автоматического регулирования, для решения задач автоматизации производственных процессов содействует появлению технико-экономического эффекта, значение которого определяется особенностями самих объектов регулирования, которые используются при производстве электронных средств.


1. ПОРЯДОК РАСЧЕТА СИСТЕМЫ СЛЕЖЕНИЯ

1.1 Разработка функциональной схемы

В системе слежения, котороя проектируется как исполнительное устройство, используется двигатель постоянного тока (Д) серии МИ, как усилитель мощности электромашинный усилитель с поперечным полем (ЭМУ). Для измерительного устройства (ИУ) рекомендуется использовать сельсильную пару: сельсин-первичный измерительный преобразователь и сельсин-трансформатор (приемник). Поскольку измерительное устройство работает на переменном токе, то после измерительного устройства должен использоваться фазовый детектор (ФД). Кроме указанных элементов в функциональную схему входят управляющее устройство, усилитель напряжения (У), редуктор (Р), при помощи которого исполнительный соединяется с объектом управления и ротором сельсина-трансформатора, и объект управления (ОУ).

Функциональная схема системы слежения представлена на рисунке 1.1.

Рисунок 1.1–Функциональная схема системы слежения (

-входной сигнал).

1.2 Выбор исполнительного двигателя

Выбор двигателя начинаем с расчёта необходимой мощности, которая должна быть достаточной для обеспечения заданных скоростей и ускорений объекта управления при заданной нагрузке.

Необходимая мощность

, Вт(1.1):
,
(1.1)

где

– коэффициент полезного действия (КПД) редуктора
=0,72

По каталогу [1, приложение А] выбираем двигатель большей мощности

и вписываем его паспортные данные в таблицу 1.3.

Таблица 1.1 – Паспортные данные двигателя МИ-51

Pн номинальная мощность, (Вт) 3200
nн номинальная скорость вращения, (об/мин) 1500
Uн номинальное напряжение, (В) 220
Iн номинальный ток якоря, (А) 17,10
Rд сопротивление цепи обмотки якоря, (Ом) 0.460
Jд момент инерции якоря, (кг·м2) 0.0125
hд КПД двигателя 82

Последовательно определяем следующие величины:

1. wн – номинальная угловая скорость двигателя(1.2):


,
(1.2)
,

2. Мн – номинальный момент двигателя(1.3):

,
(1.3)
,

3. iр –оптимальное передаточное число редуктора(1.4):

,
(1.4)

где Jp= 10-4[кг×м2] – момент инерции редуктора.

4. Мнеобх – необходимый момент на валу двигателя(1.5):

,
(1.5)

Выбранный двигатель проверяем, удовлетворяет ли он по моменту и скорости в соответствии со следующими условиями:

,
,
(1.6)

где l – коэффициент допустимой перегрузки двигателя по моменту (для двигателя постоянного тока l=10,0);

а – коэффициент допустимого кратковременного увеличения скорости двигателя сверх номинала, обычно а=1,20–1,50.

1.3 Выбор усилителя мощности

Как усилитель мощности используется ЭМУ с поперечным полем. При выборе усилителя необходимо придерживаться условий:

- номинальная мощность усилителя Рун должна удовлетворять неравенству:

,
(1.7)

где hд – КПД двигателя.

- номинальное напряжение усилителя должно быть не меньше, чем номинальное напряжение исполнительного двигателя;

- номинальный ток усилителя должен быть не меньше, чем номинальный ток двигателя.

Исходя из этих условий, выбираем тип ЭМУ[1, приложение В], данные заносим в таблицу 1.4.

Таблица 1.2 – Технические данные ЭМУ-50А3 с поперечным полем

Pуп мощность ЭМУ, (кВт) 4
Pу мощность управления, (Вт) 0.5
U напряжение, (В) 230
Iн ток якоря, (А) 17.4
Rд сопротивление цепи обмотки управления, (Ом) 0.74
Ту, Тк.з. постоянные времени, (с) 0.03, 0.17

2. СОСТАВЛЕНИЕ ПЕРЕДАТОЧНЫХ ФУНКЦИЙ ЭЛЕМЕНТОВ СИСТЕМЫ СЛЕЖЕНИЯ