Содержание
ВВЕДЕНИЕ................................................................................................................ 2
1. ВЫБОР СЕРИИ И ТИПОВ МИКРОСХЕМ И РАСПРЕДЕЛЕНИЕ ЭЛЕМЕНТОВ ФУНКЦИОНАЛЬНОЙ СХЕМЫ ПО КОРПУСАМ.................. 3
1.1. Выбор физических элементов для реализации схемы и обзор параметров выбранной серии..................................................................................................... 3
1.2. Распределение элементов функциональной схемы по корпусам............ 4
2. РАЗМЕЩЕНИЕ ЭРЭ НА МОНТАЖНОМ ПРОСТРАНСТВЕ..................... 6
3. ТРАССИРОВКА МОНТАЖНЫХ СОЕДИНЕНИЙ...................................... 10
3.1 Трассировка с помощью алгоритма Прима............................................... 10
3.2 Трассировка по алгоритму Краскала.......................................................... 12
3.3 Трассировка классическим волновым алгоритмом Ли............................ 14
ЗАКЛЮЧЕНИЕ....................................................................................................... 15
ЛИТЕРАТУРА......................................................................................................... 16
Основные принципы изготовления и применения печатных схем стали известны в начале ХХ века, однако промышленный выпуск печатных схем и плат был организован лишь в начале 40-х годов.
С переходом на микроэлектронные элементы, резким уменьшением размеров и возрастанием быстродействия схем первое место занимают вопросы обеспечения постоянства характеристик печатных проводников и взаимного их расположения. Значительно усложнились задачи проектирования и оптимального конструирования печатных плат и элементов.
Печатные платы нашли широкое применение в электронике, позволяя увеличить надёжность элементов, узлов и машин в целом, технологичность (за счёт автоматизации некоторых процессов сборки и монтажа), плотность размещения элементов (за счёт уменьшения габаритных размеров и массы), быстродействие, помехозащищённость элементов и схем. Печатный монтаж – основа решения проблемы компановки микроэлектронных элементов. Особую роль печатные платы играют в цифровой микроэлектронике. В наиболее развитой форме (многослойный печатный монтаж) он удовлетворяет требования конструирования вычеслительных машин третьего и последующих поколений.
При разработке конструкции печатных плат проектеровщику приходится решать схемотехнические (минимизация кол-ва слоёв, трассировка), радиотехнические (расчёт паразитных наводок), теплотехнические (температурный режим работы платы и элементов), конструктивные (размещения), технологические (выбор метода изготовления) задачи.
В данном курсовом проекте при разработке печатной платы мы попытались показать методы решения лишь схемотехнических и технологических задач.
1. ВЫБОР СЕРИИ И ТИПОВ МИКРОСХЕМ И РАСПРЕДЕЛЕНИЕ ЭЛЕМЕНТОВ ФУНКЦИОНАЛЬНОЙ СХЕМЫ ПО КОРПУСАМ.
1.1. Выбор физических элементов для реализации схемы и обзор параметров выбранной серии.
Выбор серии интегральных микросхем для реализации блока оперативной памяти в первую очередь продиктован скоростью работы такого блока. В этом отношении микросхемы серии ТТЛШ (транзисторно–транзисторная логика со структурой Шотки) наиболее предпочтительны.
Электрическая функциональная схема блока оперативной памяти содержит сорок пять элементов 2И-НЕ, три элемента 3И-НЕ.
Для реализации блока оперативной памяти выбираем следующие типы микросхемы:
две микросхемы серии КР1531ЛА3 (корпус содержит 4 элемента 2И-НЕ);
две микросхемы серии КР1531ЛА4 (корпус содержит 3 элемента 3И-НЕ);
Основные параметры микросхем ТТЛШ серии КР1531:
— напряжение питания Uип = 5В ± 10%;
— выходное напряжение низкого уровня не более U0вых = 0,5В;
— выходное напряжение высокого уровня не менее U1вых = 2,5В;
— время задержки распространения tзд.р. = 4,5нс;
— потребляемая мощность Pпот = 4мВт;
— сопротивление нагрузки Rн = 0,28кОм;
1.2. Распределение элементов функциональной схемы по корпусам.
Распределение четырёх элементов 2И-НЕ составляющих триггер очевидно:
Поскольку внутренних связей в таком элементе гораздо больше чем внешних, то очевидно их помещение в одну микросхему КР1531ЛА3.
Для распределения девяти оставшихся элементов 2И-НЕ по трём корпусам микросхем КР1531ЛА3 вычерчиваем часть электрической функциональной схемы блока оперативной памяти, содержащую эти элементы, и строим соответствующий ей граф G1 (рис.1.1).
а) Выбираем базовую вершину – вершину имеющую максимальное количество связей. Поскольку в нашем случае все вершины имеют одинаковое количество связей, выбираем любую из них, например вершину Х1.
б) Определяем множество вершин подключённых к базовой: {4;7}
Для каждой из вершин рассчитываем функционал по формуле:
Li=aij-pij
где aij – число связей вершины;
pij – число связей с базовой вершиной;
В нашем случае функционал равен:
L7=L4=2-1=1;
Для объединения с базовой вершиной необходимо выбрать вершину с наименьшим функционалом. Поскольку в нашем случае вершины Х7 и Х4 равнозначны, то объединяем их с Х1. Поскольку мощность блока (4 элемента 2И-НЕ в одной микросхеме) ещё не достигнута, а все оставшиеся вершины идентичны по отношению к вершине Х(1+4+7), дополним блок вершиной Х2, объединив их в одну микросхему. Получим граф:
Теперь, в качестве базовой изберём вершину Х3. Рассуждая так же как и в предыдущем шаге объединим в одну микросхему вершины Х3, Х6, Х9 и Х5. Вершину Х8 придётся поместить в отдельную микросхему.
Проанализировав полученные результаты можно увидеть, что для компоновки элементов Х1-Х9 необходимо 3 микросхемы КР1531ЛА3, причём в последней из них будет задействован лишь один элемент. В нашем случае рациональней будет уменьшить мощность блока до трёх. В этом случае количество необходимых микросхем не изменится, а элементы распределятся следующим образом: Х(1+4+7), Х(2+5+8), Х(3+6+9). Окончательно примем к проектированию именно такой вариант компоновки.
Три элемента 3И-НЕ поместим в одну микросхему КР1531ЛА3поскольку в этом случае мощность блока (кол-во элементов в микросхеме) равна количеству элементов в функциональной схеме.
На основании полученных результатов строим электрическую принципиальную схему блока оперативной памяти (см. графическую часть).
2. РАЗМЕЩЕНИЕ ЭРЭ НА МОНТАЖНОМ ПРОСТРАНСТВЕ.
В соответствии с заданием монтажное пространство — печатная плата 95х130 мм. Для размещения микросхем DD1—DD13 и разъема Х1 разобьем монтажное пространство на 14 посадочных мест, из которых место К14 отведем под разъем (рис.2.1).
К1 | К2 | К3 | К4 |
К5 | К6 | К7 | К8 |
К9 | К10 | К11 | К12 |
К13 | К14 |
Рис. 2.1
Составим матрицу расстояний для приведённой платы:
К1 | К2 | К3 | К4 | К5 | К6 | К7 | К8 | К9 | К10 | К11 | К12 | К13 | К14 | |
К1 | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 | 3 | 4 | 5 | 3 | 4 |
К2 | 1 | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 3 | 2 | 3 | 4 | 4 | 3 |
К3 | 2 | 1 | 0 | 1 | 3 | 2 | 1 | 2 | 4 | 3 | 2 | 3 | 4 | 3 |
К4 | 3 | 2 | 1 | 0 | 4 | 3 | 2 | 1 | 5 | 4 | 3 | 2 | 4 | 3 |
К5 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 | 3 |
К6 | 2 | 1 | 2 | 3 | 1 | 0 | 1 | 2 | 2 | 1 | 2 | 3 | 3 | 2 |
К7 | 3 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 3 | 2 | 1 | 2 | 3 | 2 |
К8 | 4 | 3 | 2 | 1 | 3 | 2 | 1 | 0 | 4 | 3 | 2 | 1 | 3 | 2 |
К9 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 1 | 2 |
К10 | 3 | 2 | 3 | 4 | 2 | 1 | 2 | 3 | 1 | 0 | 1 | 2 | 2 | 1 |
К11 | 4 | 3 | 2 | 3 | 3 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 2 | 1 |
К12 | 5 | 4 | 3 | 2 | 4 | 3 | 2 | 1 | 3 | 2 | 1 | 0 | 2 | 1 |
К13 | 3 | 4 | 4 | 4 | 2 | 3 | 3 | 3 | 1 | 2 | 2 | 2 | 0 | 1 |
К14 | 4 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 0 |
Приведём полный граф электрической принципиальной схемы (рис. 2.2). Элементы 1…12 – микросхемы КР1531ЛА3, элемент 13 – микросхема КР1531ЛА4, а элемент 14 – разъём.
Матрица смежности этого графа имеет вид:
К1 | К2 | К3 | К4 | К5 | К6 | К7 | К8 | К9 | К10 | К11 | К12 | К13 | К14 | |
К1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
К2 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 2 |
К3 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2 |
К4 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
К5 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 2 |
К6 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2 |
К7 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 2 |
К8 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 2 |
К9 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 2 |
К10 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 3 | 0 |
К11 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 3 | 0 |
К12 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 3 | 0 |
К13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | 1 | 3 |
К14 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 3 | 1 |
Для размещения корпусов микросхем на печатной плате воспользуемся последовательным алгоритмом размещения: