Из рис.8 видно, что измеренные значения и рассчитанные значения для отраженной волны хорошо согласуются. С другой стороны, в теневой области (30°-90°) обнаруживаются и чрезвычайно отчетливые различия в этих значениях. В качестве первой причины этих различий можно указать на то обстоятельство, что падающая волна не является плоской волной в реальных экспериментах, а близка к сферической волне. Заключение об этом можно с делать так же и по тому факту, что, вследствие распространения фронта волны, в измеренных значениях более всего проявляется теневая темная часть. В качестве второй
Рис.8. рассеянная волна на диэлектрике с большими потерями: а) - результаты измерений (бетон); b) - результаты расчетов (при
); 1 - Æ(град); 2 - (дБ).В качестве второй причины можно считать то обстоятельство, что описанная экспериментальная система не является вполне двухмерной моделью. В экспериментах в качестве параллелепипеда используется тело конечной длины (1 м.), установленное на подставке; это приводит к тому, что нельзя пренебрегать влиянием волны, отраженной от подставки. Эти влияния проявляются в заметной интерференции измеренных значений при 10° - 110°. В качестве других причин можно отметить, что рассеянная волна в формуле (33) представляет собой величину, полученную применением просто метода перевала, вряд ли являющуюся хорошим приближением.
Для изучения различий между бетоном и проводником на рис.9 приводится пример результатов для случая , когда рассеивающее тело заменено на проводник с теми же параметрами, что и на рис.8. Измеренные значения относятся к случаю алюминиевой пластины толщиной 1 мм., изготовленной для параллелепипеда, а рассчитанные значения относятся к случаю идеального проводника. И в этом примере обнаруживается, что измеренные значения для отраженной волны и рассчитанные значения хорошо согласуются. Кроме того очевидно, что предположение о том, идеальным проводником является даже алюминиевая пластина, оказывается достаточно правильным. Наконец, сравнивая рис.8, 9, можем заключить, что подавление отраженной волны наблюдается в среде с большими потерями. Это заключение совпадает с заключением, сделанном на основании рис.5, 6.
На рис.10 представлены результаты, которые относятся к случаю, когда ширина равна ширине рассеивающего тела, приведенной на рис.8, а толщина в два раза меньше; угол падения выбран равным 45°. Очевидно, что в той мере, насколько мала толщина, отраженная волна в направлении j= 135° слабее волны, отраженной под углом j= -45°. И в этом примере измеренные значения для отраженной волны хорошо согласуются с рассчитанными значениями.
Рис.9. Рассеянная на проводнике волна: а) - результаты измерений (алюминий);
b) - результаты расчетов (идеальный проводник); 1 - Æ (град.); 2 - (дБ).
Рис.10. Рассеянная волна диэлектриком с большими потерями: а) - результаты измерений (бетон); b) - результаты расчетов (при
); 1 - Æ (град.); 2 - (дБ)ЗАКЛЮЧЕНИЕ
Приведена точная формулировка задачи рассеяния плоской электромагнитной волны (Е-волны) на параллелепипеде из диэлектрика с большими потерями, в которой используется преобразование Фурье. В терминах преобразований Фурье приведено решение задачи. В том случае, когда ширина рассеивающего тела сравнительно велика по отношению к длине волны, а в среде этого тела имеются большие потери порядка потерь в бетоне, как показывает исследование, расчеты можно значительно упростить. Обсуждены различия по сравнению со случаем идеального проводника.