Смекни!
smekni.com

Расчет системы передачи дискретных сообщений (стр. 3 из 5)

6. Привести выражение и построить график энергетического спектра Gu(f) модулированного сигнала.

7. Определить ширину энергетического спектра ∆Fu модулированного сигнала и отложить значение ∆Fu на графике Gu(f).

1) Модуляция – изменение по заданному закону во времени величин, характеризующих какой-либо регулярный физический процесс. Под модуляцией колебаний понимают изменение амплитуды, частоты, фазы и т. д. В случае амплитудной модуляции (АМ) несущее колебание промодулировано по закону изменения амплитуды первичного сигнала. Несущее колебание – это синусоидальное колебание высокой (несущей) частоты, амплитуда которого модулируется передаваемым сигналом.

Модулятор, составная часть передатчика в каналах электросвязи, с помощью которой осуществляется управление параметрами гармонических электромагнитных колебаний, т. е. модуляцией колебаний. Управляющий элемент модулятора – транзистор, электронная лампа, клистрон, ячейка Керра и т. д.

Аналитическое выражение для АМ модулированного сигнала:

;

;

.

2) Временные диаграммы модулирующего b(t) и модулированного U(t) сигналов, соответствующие передачи j-го уровня сообщения a(t).

3) Корреляция, в математической статистике – вероятностная или статистическая зависимость. Корреляция возникает тогда, когда зависимость одного из признаков от другого осложняется наличием ряда случайных факторов.

Корреляционная функция дает качественное представление о линейной зависимости между значениями одной или двух случайных функций в выбранные моменты времени.

Свойства корреляционной функции:

  1. Корреляционная функция четна:
  2. Абсолютное значение автокорреляционной функции при любых
    не может превышать значения при
    =0.

· корреляционная функция имеет максимум при

=0.

· абсолютное значение корреляционной функции ограничивается значением дисперсии.

  1. Случайные процессы, наблюдаемые в стационарно устойчиво работающих системах имеют конечное время корреляции:

Корреляционная функция случайного синхронного телеграфного биполярного сигнала с единичной высотой импульсов имеет следующий вид:

, где T длительность импульсов.

4) Спектральная плотность величины – предел отношения величины (напряжения, мощности и др.), соответствующий узкому участку оптического спектра, к ширине этого участка.

Для нахождения спектральной плотности мощности Gb(f) сигнала b(t) необходимо воспользоваться теоремой Хинчина - Винера, которая устанавливает связь между энергетическим спектром корреляционной функцией случайного процесса.

Спектральная плотность мощности модулирующего сигнала Gb(f):

График спектральной плотности мощности модулирующего сигнала Gb(f):

Gb(f),B2/Гц 3.03×10-6 9.743×10-9 1.335×10-7 9.395×10-9 4.373×10-8 2.962×10-10
f,Гц 1 3.5×105 5×105 7×105 8.5×105 106

5) На графике видно , что вся энергия модулирующего сигнала сосредоточена в полосе ∆Fb Гц.

6) График спектральной плотности мощности модулированного сигнала Gb(f).:

В результате модуляции исходный спектр сдвигается на частоту модулируемого колебания. Если известен спектр модулирующего сигнала , можно найти спектр амплитудно-модулированного сигнала. Энергетический спектр амплитудно-модулированного сигнала

содержит
-функцию на частоте f=f0 верхнюю и нижнюю боковые полосы. Наличие
-функции в энергетическом спектре отражает наличие несущей частоты при амплитудной модуляции. Форма верхней боковой полосы энергетического спектра АМ сигнала совпадает с формой энергетического спектра модулирующего сигнала b(t), а форма нижней – совпадает с зеркальным спектром сигнала b(t).

7) Ширина энергетического спектра при АМ будет в два раза больше ширины энергетического спектра модулирующего сигнала.

Канал связи

Передача сигнала U(t) осуществляется по каналу с постоянными параметрами и аддитивным флуктуационным шумом n(t) с равномерным энергетическим спектром N0/2 (белый шум).

Сигнал на выходе такого канала можно записать следующем образом:

z(t) = U(t) + n(t) , U(t)- полезный сигнал, n(t)- аддитивная помеха.

Требуется:

1. Определить мощность шума в полосе частот Fk = ∆Fu ;

2. Найти отношение сигнал – шум Рс ш;

3. Найти пропускную способность канала С;

4. Определить эффективность использования пропускной способности канала Кс, определив ее как отношение производительности источника Н к пропускной способности канала С.

1) В каналах связи аддитивные помехи возникают по различным причинам и могут принимать различные формы, индивидуальные реализации которых трудно учесть. Такие помехи чаще вызывают необратимые изменения передаваемых сигналов. Аддитивные помехи по своей структуре разделяют на три основных класса: распределенные по частоте и времени (флуктуационные), сосредоточенные по частоте (квазигармонические) и сосредоточенные во времени (импульсные).

Флуктуационные помехи порождаются в системах связи случайными отклонениями тех или иных физических величин (параметров) от их средних значений. Источником такого шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей зарядов.

Наиболее распрастраненной причиной шума в аппаратуре связи являются флуктуации, обусловленные тепловым движением.

Зная спектральную плотность мощности N0 можно определить мощность шума Рш в полосе ∆Fu (промодулированного сигнала).

;

2) При определенном отношении

, для двоичных равновероятных сигналов U1(t) и U2(t) их средняя мощность будет ровна:

, В2;

где

и
, где T- длительность сигналов.

Символу “0” cоответствует сигнал

;

Символу “1” cоответствует сигнал

;