Смекни!
smekni.com

Система управления двухкоординатным объектом (стр. 5 из 5)

По нажатию кнопки “Пуск” двигатели (каналы), отмеченные флажками на панели индикаторов режимов (1) начнут отрабатывать заданное количество шагов (или непрерывное движение, если отмечен флажок (4)) с заданными скоростью и ускорением (5, 6, 7, 8) в направлении, отмеченном переключателем (10) в режиме целого шага или в режиме дробления шага (в соответствии с переключателем (9)). При этом исполняемая программа соответствующих каналов будет перезаписана. Нажатие кнопки «Пуск» равнозначно последовательному нажатию сначала

кнопки «Загрузка», потом кнопки «Старт».

Кнопка “Стоп” (12) прерывает работу каналов, отмеченных флажками на панели индикаторов режимов (1).


Ручной режим управления.

Перейти в ручной режим управления можно при помощи переключателя (4) (рис. 20). В ручном режиме основными элементами являются список команд (программа) (рис. 24) и панель команд (рис. 25).

Рис. 24. Список команд (программа). Рис. 25. Панель команд.

Список команд для отправки контроллеру SMC-3 или блоку SMSD-3.0 составляется при помощи кнопок панели команд (рис. 25). Нажатие на кнопку на панели команд добавляет соответствующую команду в конец списка. Для того, чтобы переместить команду в списке на новую позицию необходимо нажать на номер этой команды в списке (первый столбец с номерами команд) и удерживая нажатой левую клавишу мыши перетащить строчку в нужную позицию. Чтобы удалить команду из списка, можно либо нажать кнопку «Удалить текущую строку», либо перетащить ненужную команду в конец списка. По нажатию кнопки «Очистить» очищается весь список команд.По нажатию кнопки «Отправить» список команд передается контроллеру SMC-3 или блоку SMSD-3.0. Программа, загружаемая в контроллер SMC-3-1 для начала работы шагового электропривода, показана на рис. 24. Скорость вращения двигателя ДШИ-200-3 угол шага равен

. 1 оборот за 1 секунду.

Заключение

Дальнейшие перспективы развития волоконной оптики в настоящее время связаны с созданием и использованием световодов среднего инфракрасного диапазона, таких как фторидные оптоволокна, для этого необходимо усовершенствование технологии их производства.

Разработанная схема стабилизации температурных режимов при производстве фторидных оптических волокон позволяет наиболее точно регулировать температуру вытяжки оптоволокна, что в свою очередь обеспечивает наименьший коэффициент оптических потерь в волокне.

В процессе вытяжки фторидных волокон недостаточно только поддерживать температуру на заданном уровне, необходимо также одновременно центрировать заготовку. С этой целью была разработана схема системы управления двухкоординатным объектом – координатным столом, жестко скрепленным с трубой, в которой находится заготовка.

В процессе ленточного снования применяется управление объектом – регулирующим органом – по одной координате. Была разработана схема управления шаговым электроприводом для регулирования натяжения нитей в процессе снования, обеспечивающая высокоточное управление и минимизацию затрат.

Также были разработаны печатные платы (два канала – для управления координатным столом и один канал – для стабилизации температурных режимов при производстве фторидных оптических волокон; для управления регулирующим органом в процессе снования).

Предложенная система управления может применяться также для решения задач в различных отраслях промышленности, связанных с двухкоординатным управлением. Поэтому можно говорить, что перспективы развития данной системы имеют большой потенциал в будущем.