Смекни!
smekni.com

Проектирование цифровых каналов и трактов (стр. 5 из 5)

Применение:

- Двух уровневые коды (NRZ, CMI): получили широкое распространение в волоконно – оптических линиях связи из-за наибольшей помехозащищенности и минимальным числом разрешенных уровней. Кроме того, в коде CMI нч составляющие спектра подавлены, присутствует составляющая тактовой частоты, сигнал имеет относительно узкий спектр. Данный код рекомендован МСЭ-Т для интерфейсов цифровых сетевых трактов со скоростями передачи от 140 до 155 Мбит/c

- Трехуровневые коды (AMI, HDB) – получили применение на первых этапах развития и внедрения ЦТС. Имеют невысокую помехозащищенность, невозможность выделения хронирующего сигнала и неширокий энергетический спектр, что важно для передачи по металлическим парам, велика вероятность размножения ошибок. Код HDB3 рекомендован МСЭ-Т для интерфейсов цифровых сетевых трактов со скоростями передачи от 2,8, 5 и 34 Мбит/c.

- Алфавитные (блочные) коды. Код 2B1Q – широко используется в сетях абонентского доступа, т.к. позволяет существенно снизить тактовую частоту передаваемой последовательности.и улучшают использование кодового пространства.


Задание №8. Проектирование участка регенерации ЦТС симметричного кабеля

Рассчитайте максимальную протяженность участка регенерации ЦТС симметричного кабеля при использовании однокабельной и двухкабельной схем. Сопоставьте результаты, сделайте выводы.

Исходные данные:

Скорость передачи

Тип кода 2B1Q

Кабель КСПП – 1 х 4 х 0.9

Коэффициент шума КУ F = 3.9

Вероятность ошибки

Высота прямоугольного импульса на входе тракта

Решение:

Для заданного кабеля КСПП – 1 х 4 х 0.9 имеем:

Коэффициент затухания на частоте 1 МГц:

Волновое сопротивление:

Среднее значение переходного затухания на ближнем конце на частоте 1 МГц:


Структурная схема участка регенерации имеет вид:

Рассмотрим действие собственных помех. Защищенность от собственных помех вычисляется по формуле:

- абсолютный уровень пиковой мощности прямоугольного импульса на входе тракта

- тактовая частота сигнала в линии, МГц; так как код 2B1Q меняет тактовую частоту в два раза то теперь она равна
;

- затухание линии на полутактовой частоте, дБ.

Найдем коэффициент затухания на полутактовой частоте:

Требуемая величина защищенности, при которой обеспечивается заданная вероятность ошибки

, вычисляется по формуле:

, дБ

где L – число уровней кода в линии, для кода 2B1QL = 4;

= 5…10 дБ – запас защищенности, характеризующий качество изготовления регенератора. Возьмем
= 10 дБ.

Рассчитаем требуемую защищенность:

Чтобы определить максимальную протяженность участка регенерации, ограниченную собственной помехой, необходимо приравнять ожидаемую и требуемую защищенности

, решив полученное уравнение относительно
, получим:

Максимальная протяженность участка равна:

Рассмотрим однокабельную схему. В ней учитывают собственные помехи и переходные влияния на ближний конец.


Если уровень первой гармоники колебания на входе влияющей цепи

, то уровень переходной помехи в ТРР равен

;

Уровень сигнала в этой же точке равен

;

Ожидаемая минимальная защищенность от ПП из-за ПВБК в ТРР составит:

Максимально допустимое затухание участка регенерации, ограниченное ПВБК, найдем, приравняв ожидаемую и требуемую защищенности

, причем
для четырехуровневого кода. Найдем среднее значение переходного затухания на ближнем конце на полутактовой частоте:

39.473 дБ

Получим:


39.473 – 22 = 17.473 дБ

Максимальная протяженность участка регенерации равна:

17.473 / 26.674 = 0.655 км

Вывод: при использовании однокабельной схемы симметричной кабельной цепи переходное влияние на ближний конец ограничивает протяженность участка регенерации величиной 0.655 км, что в 4,24 раза меньше длины участка, полученной при рассмотрении влияния только собственной помехи. Таким образом, при расчете такой схемы необходимо в большей степени учитывать переходные помехи на ближний конец.

Рассмотрим двухкабельную схему. В ней учитывают собственные помехи и переходные влияния на дальний конец.

Уровень переходной помехи в ТРР равен

;

Уровень сигнала в этой же точке равен

;

Защищенность сигнала от помехи в ТРР равна:

,

то есть ожидаемая минимальная защищенность от ПП из-за ПВДК в ТРР равна защищенности цепи на дальнем конце на полутактовой частоте.

Среднее значение защищенности на участке кабеля длиной

км на полутактовой частоте равно
37.4 Дб при f0 = fт / 2 = 8.592 МГц

Максимальную протяженность участка регенерации, ограниченную ПВДК, найдем, приравняв среднее значение защищенности к требуемому

, причем
22 Дб, для четырехуровневого кода. Получим:

, где

Определим максимальную протяженность участка регенерации из соотношения:

=
км

Полученная большая величина говорит о том, что переходное влияние на дальний конец пренебрежимо мало, и учитывать нужно только собственную помеху, расчет для которой был проведен выше.

Вывод: при использовании двухкабельной системы влияют только собственные помехи, т.е переходные влияния не столь критичны.


Список литературы

1. Тверецкий М.С., Четкин С.В. Проектирование цифровых каналов и трактов/Инсвязьиздат/ Москва 2005

2. Гордиенко В.Н., Тверецкий М.С. Цифровые телекоммуникационные системы: Учебник для вузов/ М.: Горячая линия - Телеком - 2005. - 428 с: ил.

3. Чёткин СВ. Расчет электрических характеристик линейных трактов кабельных ЦСП. Методическая разработка по дипломному проектированию цифровых систем передачи/ВЗЭИС - М., 1988. - 49 с: ил.

5. Чёткий СВ. Методические указания по курсовому и дипломному проектированию оптических систем передачи/ МТУСИ,- М., 2002. - 43 с: ил.

6. Алексеев Е.Б. Основы технической эксплуатации современных волоконно-оптических систем передачи: Учеб. пособие/ ИПК при МТУСИ, 1998.- 194 с.:ил.