Смекни!
smekni.com

Расчёт интегральной микросхемы (стр. 5 из 5)

4.Химическая обработка пластин в перикисно-аммиачном растворе.

5.Диффузия сурьмы для формирования

- скрытого слоя в две стадии: загонка при 1000
в течение 20мин, обработка осажденного сурьмяно-силикатного стекла во влажном кислороде при 1000
, снятие стекла и окисла в растворе HF, вторая стадия разгонка при 1200
в течение 2 часов.

6.Снятие окисла в растворе

:HF:
=7:1:3.

7.Химическая обработка пластин в перикисно-аммиачном растворе.

8.Эпитаксиальное наращивание монокристаллического слоя кремния n-типа из газовой смеси

+
при 1200
, толщиной (7
0,1) мкм, с плотностью дефектов не более
, легированного мышьяком.

9.Окисление поверхности эпитаксиального слоя при 1000

в течение 40 мин в сухом кислороде для получения окисла толщиной (60
10) нм.

10.Фотолитография для вскрытия окон под разделительную (изолирующую) диффузию и окон под диффузионные резисторы на основе коллекторной области. Применять фоторезист ФН 102. Нанесение фоторезиста и сушку осуществлять на агрегате формирования фоторезистивных покрытий АФФ 2. Сушку проводить в течении 15 мин. Экспанирование проводить в установке экспанирования ЭМ-569. Время экспанирования 40 сек. Проявление проводить в течении 20сек и температурой растворителя 50

. После проявки сушку проводить в два этапа: 30 мин при температуре 90
и 40 мин при температуре 200
. Для травления слоя расположенного под фоторезистивной маской использовать травитель следующего состава: HF:
=2:7:1.

11.Двухстадийная диффузия бора: осаждение на поверхность пластины боросиликатного стекла из газовой фазы, содержащей

и
, при 950
, обработка боросиликатного стекла во влажном кислороде при 600
в течение 30 мин, снятие боросиликатного стекла в травителе HF:
=1:10, разгонка при 1050
в течение 30 мин до толщины превышающей толщину эпитаксиального слоя.

12.Термическое окисление структур при 1050

в сухом (10мин), влажном (20мин), и снова в сухом (10мин) кислороде.

13.Фотолитография для вскрытия окон в окисле для проведения базовой диффузии над теми карманами, где будут формироваться транзистор и резистор на основе базового диффузионного слоя. Применять фоторезист ФН 102. Нанесение фоторезиста и сушку осуществлять на агрегате формирования фоторезистивных покрытий АФФ 2. Сушку проводить в течении 15 мин. Экспанирование проводить в установке экспанирования ЭМ-569. Время экспанирования 40 сек. Проявление проводить в течении 20сек и температурой растворителя 50

. После проявки сушку проводить в два этапа: 30 мин при температуре 90
и 40 мин при температуре 200
. Для травления слоя расположенного под фоторезистивной маской использовать травитель следующего состава: HF:
=2:7:1.

14.Двухстадийная базовая диффузия примеси p-типа (бор). Загонку проводить в течении 20 мин при температуре 900

. Одновременно формируется на базовых областях окисел толщиной 0,18…0,2 мкм и проводится разгонка 1ч при 1200
.

15. Фотолитография для вскрытия окон в окисле над областями эмиттера транзистора и коллекторного контакта нижней обкладки конденсатора. Размер эмиттера 100мкм, точность совмещения фотошаблона не более 1мкм.

16.Диффузия фосфора для получения области эмиттера на глубину 1,3мкм. Осаждение проводить при температуре 960

.

17.Фотолитография для вскрытия контактных окон в

к резисторам, к нижней обкладке конденсатора и к областям транзистора.

18.Напыление пленки Al +(1%)Si толщиной (0,6

0,1) мкм, температура подложки 200
, температура отжига 250
.

19.Фотолитография по алюминию для формирования пленочной коммутации, верхней обкладки конденсатора и внешних контактных площадок. Клин травления и уход размеров не более 1мкм.

20.Осаждение изолирующего слоя окисла плазмохимическим способом при температуре 150

толщиной (1
0,1)мкм.

21.Фотолитография по пленке защитного диэлектрика для вскрытия окон к контактным площадкам микросхемы и дорожек для скрайбирования.

22.Скрайбирование пластин для разделения их на кристаллы. Операции контроля и разбраковка микросхем по электрическим параметрам и на функционирование на еще не разделенных на кристаллы пластинах ( на негодные кристаллы ставится метка краской). Затем производится разделение пластин на кристаллы без потери их взаимной ориентировки. Операции монтажа и сборки в корпус.


Заключение

В процессе выполнения курсового проекта была разработана полупроводниковая интегральная схема усилителя. В курсовом проекте были выполнены тепловые расчеты, расчет паразитных емкостей. Полученные в результате расчета значения не превышают максимально допустимых, указанных в справочной литературе. Та же картина наблюдалась и при расчете паразитных емкостей, значения, полученные в процессе расчета, оказались ничтожно малыми. Можно сказать, что паразитные емкости с подобными номинальными значениями не будут оказывать, сколь бы то ни было, ощутимое воздействие на работу усилителя. Посему было принято решение конфигурацию проводников оставить без изменений. В процессе работы был также осуществлен расчет надежности.

Основываясь на значениях топологических размеров элементов был разработан топологический чертеж. Разработав топологию, мы перешли к выбору корпуса и в результате остановили свой выбор на корпусе вида: «Корпус 1203 ГОСТ 17467 – 79».Важным этапом явился этап разработки технологического процесса изготовления микросхемы. В результате можно сделать вывод, что последний вполне способен обеспечить воспроизведение параметров, заложенных конструктором на этапе разработки полупроводниковой интегральной схемы. И в заключение всего можно сделать вывод, что разработанная нами микросхема способна занять достойное место среди подобных ей изделий.

В итоге можно сказать, что курсовое проектирование значительно влияет на освоение материала учебного курса и дает реальное представление о конструкторско-технологических работах, проводимых на этапе проектирования.


Литература

1. Конструирование и производство микросхем. Курсовое проектирование: Учеб. пособие для вузов по спец. «Конструирование и производство радиоаппаратуры» и «Конструирование и производство электронно-вычислительной аппаратуры» /Под ред. Коледова Л.А. – М.: Высшая школа, 1984.-231 с.

2. Матсон Э.А., Крыжановский Д.В. Справочное пособие по конструированию микросхем. – Мн.: Вышэйшая школа, 1982.-224 с.

3. Матсон Э.А. Конструкции и технология микросхем: Учебное пособие для радиотехн. спец. вузов. – Мн.: Вышэйшая школа, 1985.- 207 с.