Курсовая работа
Расчёт интегральной микросхемы
Содержание
Введение
1. Анализ исходных данных и выбор конструкции
2. Разработка коммутационной схемы
3. Расчет параметров элементов
4. Тепловой расчет микросхемы в корпусе
5. Расчет паразитных емкостей
6. Расчет параметров надежности ИМС
7. Разработка технологии изготовления микросхем
Заключение
Литература
Приложение
Создание микроэлектронной аппаратуры явилось результатом процесса комплексной микроминиатюризации электронно-вычислительных средств, аппаратуры связи, устройств автоматики. Этот процесс возник в связи с потребностями развития промышленного выпуска изделий электронной техники на основе необходимости резкого увеличения масштабов их производства, уменьшения их массы, занимаемых ими объемов, повышения их эксплуатационной надежности.
Интегральная микросхема (ИМС) – это конструктивно законченное изделие электронной техники, выполняющее определенную функцию преобразования информации и содержащее совокупность электрически связанных между собой электрорадиоэлементов (ЭРЭ), изготовленных в едином технологическом цикле.
По способу изготовления различают полупроводниковые и пленочные ИМС. В полупроводниковых ИМС все ЭРЭ и часть межсоединений сформированы в приповерхностном слое полупроводниковой (обычно кремниевой) подложки. В пленочных ИМС пассивные ЭРЭ изготовлены в виде совокупности тонких (менее 1мкм) или толстых (10-50мкм) пленок, нанесенных на диэлектрическую подложку. Гибридные ИМС (ГИС) представляют собой комбинацию пленочных пассивных ЭРЭ с миниатюрными бескорпусными дискретными активными приборами (полупроводниковыми ИМС, транзисторами, диодами), расположенных на общей диэлектрической подложке.
Актуальность производства и проектирования интегральных схем обусловлена следующими достоинствами:
- высокой надежностью вследствие уменьшения количества паянных и других соединений, которые имеют высокую интенсивность отказов, по сравнению с РЭС на дискретных элементах;
- малыми габаритами и весом, что повышает надежность РЭС, так как при малых габаритах и весе больше резонансные частоты и аппаратура становиться более устойчивой к механическим воздействиям;
- низким энергопотреблением, что объясняется малым расстоянием между элементами в микросхеме (большая плотность упаковки), что приводит к меньшим затуханиям и искажениям полезного сигнала, вследствие чего возможно снижение питающих напряжений в интегральной схеме по сравнению со схемами на дискретных элементах;
- сокращением длительности процессов проектирования и производства РЭС на основе интегральных схем;
- повышением ремонтопригодности, так как становится проще отыскать и устранить неисправность.
Задачами данного курсового проекта являются: выбор конструкции ИМС (полупроводниковая или гибридная), расчет элементов(резисторов, конденсаторов, транзисторов и т.д) и разработка топологии, а также тепловой расчет, расчет надежности и паразитных связей и разработка технологии изготовления ИМС.
1. Анализ исходных данных и обоснование выбора конструкции
Сначала анализируем электрическую принципиальную схему. Схема является аналоговой.
Исходя из этого ее можно выполнять как в виде полупроводниковой ИМС, так и в виде гибридной ИМС.
Далее анализируем перечень элементов. Резисторы имеют номинальные сопротивления в приделах от 1,2 кОм до 9 кОм и номинальные мощности рассеивания ниже 5 мВт, а конденсатор имеет номинальную емкость 20-30 пФ, что позволяет их выполнить как в виде ГИС, так и в виде полупроводниковой ИМС. Погрешности электрических параметров резисторов и конденсатора выше 15%, что также не накладывает ограничения в выборе конструктивно-технологического варианта микросхемы. Ввиду того, что схема содержит большое количество транзисторов, следует склониться к выбору биполярной полупроводниковой ИМС.
С целью снижения себестоимости ИМС необходимо их выпускать большими партиями, что обусловлено меньшими затратами на амортизацию с основных средств на единицу конструкции. В связи с вышеизложенным полупроводниковые ИМС экономически целесообразны только при массовом или крупносерийном характере производства.
2. Разработка коммутационной схемы
Разработка коммутационной схемы – это первый этап разработки топологии. На этом этапе путем анализа электрической принципиальной схемы оценивается возможность реализации изделия в виде полупроводниковой интегральной схемы. При составлении коммутационной схемы, представленной на рисунке 2.1, за основу была принята схема электрическая принципиальная усилителя . Далее преобразуем ее с учетом конструктивных особенностей элементов схемы в полупроводниковом исполнении. В частности сформируем схему так, чтобы в ней отсутствовали пересечения проводников. В процессе выполнения разработки коммутационной схемы было принято решение разместить внешние контактные площадки на противоположных сторонах платы, что облегчит осуществление операции соединения внешних контактных площадок с выводами корпуса.
3. Расчеты элементов ИМС
Расчет биполярного транзистора с применением ЭВМ
По литературному источнику [1] определяем основные электрические параметры и эксплуатационные данные на заданный транзистор (КТ319В).
Таблица 2.1
Основные электрические параметры и эксплуатационные данные на заданный транзистор
Тип транзистора | Струк тура | Интервал рабочих темпера тур | ||||||
КТ319В | n-p-n | 100 | 5 | 1 | 15 | 40 | 15 | -60…+85 |
Используя ЭВМ и данные, полученные из справочной литературы, определяем нужные нам характеристики интегрального биполярного транзистора.
Исходные и корректируемые данные:
1.Значение тока коллектора
=15 мА.2.Напряжение коллектор-эмиттер
=5В.3.Длина эмиттера
=0,005см.4.Ширина эмиттера
=0,005см.5.Глубина
области (эмиттер) =0,85*10-4 см.6. Глубина
области (активная база) =3*10-4 см.7.Толщина эпитаксиальной пленки
=10*10-4 см.8.Концентрация донорной примеси на поверхности эмиттера
= 3*1021 .9. Концентрация акцепторной примеси на поверхности базы
= 5*1017 .10.
= 5*1015 .11.Температура окружающей среды 300 К.
Результаты расчета на ЭВМ:
1.Статический коэффициент передачи тока
=46,7 .2.Граничная частота усиления
=107МГц.3.Поверхностное сопротивление эмиттера
=0,573 .4.Поверхностное сопротивление коллектора
=569 .5.Поверхностное сопротивление пассивной базы
=284 .6.Поверхностное сопротивление активной базы
=480 .7.Сопротивление базы
=28,5 Ом.8.Сопротивление коллектора
=60 Ом.9.Пробивное напряжение перехода эмиттер-база
=6,78 В.10.Пробивное напряжение перехода коллектор-база
=116 В.