Смекни!
smekni.com

Система управления электроприводом лифта (стр. 3 из 7)

- датчик температуры – для контроля температуры импульсного блока питания и электродвигателя, предотвращения их перегревания и, как следствие, выхода из строя;

- датчик перемещения – для отслеживания местоположения кабины лифта и, соответственно, задания режимов работы электропривода;

- датчик скорости – для контроля скорости перемещения кабины лифта и включения аварийного тормоза в случае превышения ею предельного значения;

- датчик веса – для контроля загруженности кабины лифта (если данный параметр превышает допустимые значения, то тормоз электропривода лифта не отключается);

- датчик закрытия и открытия дверей – только в случае закрытия дверей, кабина начинает движение;

- датчик тока – для контроля величины тока, протекающего через ДПТ и транзисторные ключи.

В качестве датчика температуры используется устройство на основе терморезистора R(T)KTY10. Устройство устроено таким образом, что при достижении определённой температуры и изменения соответственно сопротивления на резисторе, а также увеличения на нём падения напряжения, на вход микроконтроллера перестаёт поступать сигнал логической единицы и микроконтроллер формирует сигнал аварийного останова.

Рисунок 2.1 – Структурная схема подключения терморезистора к

микроконтроллеру

Uоп - опорное напряжение

МК – микроконтроллер

Для контроля перемещения кабины лифта можно использовать фотоэлектрический датчик перемещений. Датчики такого типа позволяют контролировать перемещения на любые расстояния. Используем фотоэлектрический датчик типа ВЕ-178В. Его основные технические характеристики:

- дискретная способность – 1000-5000 имп/об;

- габаритные размеры – 56х96;

- масса – 0.67 кг.;

- класс точности – второй.

Рисунок 2.2 – Структурная схема подключения фотоэлектрического датчика перемещений к микроконтроллеру

ФИД – фотоэлектрический импульсный датчик

СОНД – схема определения направления движения

Сигнал с выхода фотоэлектрического датчика представляет собой два импульсных сигнала синусоидной и косинусоидной форм. При движении в одном направлении (например, «вверх») они будут расположены друг относительно друга в следующем виде (рисунок 2.3):

Рисунок 2.3 – Вид сигналов на выходе фотоэлектрического датчика при движении «Вверх»

При движении в обратном направлении (например, «вниз») они будут расположены друг относительно друга в следующем виде (рисунок 2.4):

Рисунок 2.4 – Вид сигналов на выходе фотоэлектрического датчика при движении «Вниз»

Схема определения направления движения (СОНД) в зависимости от вида смещения сигналов друг относительно друга, формирует на своём выходе соответствующий сигнал, указывающий микроконтроллеру направление движения кабины лифта. На валу исполнительного механизма устанавливается датчик угловой скорости, с помощью которого контролируется скорость перемещения кабины лифта. В качестве такого датчика может быть использован тахогенератор. Используем тахогенератор постоянного тока типа СЛ-161. Его основные технические характеристики:

- напряжение питания – 27 В;

- потребляемый ток – 300 mA;

- чувствительность – 0.02 В/об/мин;

- nmax = 2400 об/мин;

- максимальный ток нагрузки – Imax = 0.02 A;

- сопротивление обмотки якоря – 115 Ом;

- масса – 0.8 кг.

Рисунок 2.5 – Структурная схема подключения тахогенератора к

Микроконтроллеру ТГ – тахогенератор АЦП – аналого-цифровой преобразователь

В качестве датчика веса используем выключатель (SB1), который устанавливается под полом кабины лифта. Пол кабины лифта установлен на пружинах, которые удерживают его в начальном положении. По мере загрузки кабины лифта, пружины сжимаются и при достижении определённой нагрузки на пол кабины, срабатывает выключатель, размыкая контакт и, тем самым, давая сигнал о запрете закрытия дверей и отключения тормозной системы лифта. При уменьшении нагрузки выключатель снова замыкается и поступает сигнал разрешения закрытия дверей и начала движения.

Рисунок 2.6 - Структурная схема подключения датчика веса

к микроконтроллеру

АЦП – аналого-цифровой преобразователь

МК – микроконтроллер

Для контроля закрытия и открытия дверей может быть использован аналогичный выключатель (см. рисунок 2.6), который при закрытых дверях замыкается и тем самым даёт сигнал разрешения на отключение тормозной системы лифта и на начало движения его кабины и, наоборот, при открытых дверях он разомкнут, и сигнал через него не проходит.

Для контроля величины тока и отключения системы в случае его превышения над критическим значением используются два аналогичных датчика тока. Один из них устанавливается непосредственно в систему питание ДПТ и контролирует величину тока через двигатель, а второй – в систему питания импульсного блока питания и контролирует величину тока, протекающего через силовые транзисторные ключи.

Рисунок 2.7 - Структурная схема подключения датчика тока

к микроконтроллеру

Для преобразования аналоговых сигналов в дискретную форму используется аналого-цифровой преобразователь типа MAXI202 с параметрами:

- частота дискретизации сигнала – 133 кГц;

- разрядность – 8 разрядов;

- напряжение питания - +3...+5 В.

2.2 Анализ способов реализации силовой части электропривода лифта

В пункте 1.2 был проведён анализ различных вариантов организации электропривода лифта. Распространённым вариантом является организация электропривода лифта на двигателе постоянного тока. Такой тип организации позволяет обеспечить значительное снижение скорости движения кабины, а также плавную и точную остановку. Автоматизация такого типа электропривода будет рассмотрена в данной курсовой работе.

Электропривод автоматизируемого лифта организован на двигателе постоянного тока Д510. Скорость вращения вала данного двигателя (угловая скорость вала) регулируется изменением питающего напряжения, для чего применяется широтно-импульсный модулятор (ШИМ).

Двигатель постоянного тока, применяемый для привода кабины лифта:

- мощность - 6 кВт;

- ток якоря - 25 А;

- номинальная частота вращения - 550 об/мин.;

- максимальная частота вращения - 2200 об/мин.;

- напряжение якоря - 220В;

- максимальный момент на валу - Мmax=2550Н;

В качестве источника электропитания для выбранного двигателя используем импульсный источник питания, основанный на высокочастотном преобразовании энергии сети в выходное постоянное напряжение.

Требуемые параметры от проектируемого импульсного источника питания:

- необходимое напряжение питающей сети – 220 В;

- частота питающего напряжения – 50 Гц;

- количество фаз питающей сети – две;

- изменение амплитуды питающего напряжения – 10%;

- изменение частоты питающего напряжения – 1%;

- максимальный ток нагрузки - 25 А;

- необходимая мощность - 6 кВт;

Исполнительный двигатель включается в мостовую схему, состоящую из четырёх транзисторных ключей (рисунок 2.7).

Рисунок 2.7 – Структурная схема подключения ДПТ к источнику питания

ДТ – датчик тока

ИБП – импульсный источник питания

ФНЧ – фильтр низких частот

ДПТ – двигатель постоянного тока

2.3 Выбор количества и типов входных и выходных информационных каналов

В соответствии с количеством выбранных датчиков (восемь – датчики температуры двигателя и импульсного блока питания, датчик перемещения, скорости движения кабины лифта, датчик веса, датчики тока через двигатель и импульсный блок питания и датчик открытия/закрытия дверей) определяется количество и типы входных и выходных каналов. Выбранные датчики необходимы для контроля параметров двигателя (частота вращения вала, температура, угловая скорость), местоположения и загруженности кабины, состояния дверей.

Перечень датчиков, исполнительных механизмов и их параметры содержится в таблице 1.

В качестве гальванической развязки используем оптопару, которая характеризуется высоким быстродействием и малой потребляемой мощностью.



Таблица 2.1 – Параметры датчиков и исполнительных механизмов

Датчик Тип датчика Выходное напряже-ние, В Гальвани-ческая развязка Тип входного канала Мощность Питание Исполнительный механизм Тип управления
Датчик температуры (на терморезисторе КТY10) Цифровой 0…5 Не нужна Порт Р0 МК ЭП 40 Вт Постоянный ток Электродвигатель Д510 ШИМ
Датчик перемещения ВЕ–178В Импульсный 0…5 Не нужна Таймер/ счётчик МК ЭП 12 Вт
Датчик угловой скорости (тахогенератор СЛ-161) Аналоговый 0…48 Нужна АЦП 10 Вт
Датчик тока 1 Цифровой 0…5 Не нужна Порт Р0 МК ЭП 10 Вт
Датчик веса (выключатель SB1) Цифровой 0…48 Нужна Порт Р0 МК ЭП Постоянное напряжение
Датчик закрытия/ открытия дверей (выключатель SB2) Цифровой 0…48 Не нужна
Датчик температуры (на терморезисторе КТY10) Цифровой 0…5 Не нужна Порт Р0 МК ИБП 40 Вт Постоянный ток Транзисторные ключи ШИМ
Датчик тока 2 Цифровой 0…5 Не нужна 10 Вт

2.4 Разработка структуры информационного канала электропривода лифта

Структура информационного канала системы зависит от количества применяемых датчиков, их типа и количества необходимых сигналов управления. В данном случае у нас используется 8 датчиков, один из которых аналоговый (датчик угловой скорости вращения вала электродвигателя). Датчик угловой скорости (тахогенератор СЛ-161) подключается к восьмиразрядному аналого-цифровому преобразователю типа AD7823.