Смекни!
smekni.com

Выбор схемы развития районной электрической сети (стр. 7 из 18)

Таким образом, анализ установившихся режимов наилучшего варианта развития сети позволяет сделать вывод о том, что качество электроэнергии в выбранном варианте соответствует ГОСТ и дополнительных средств регулирования напряжения не требуется.

5. РАСЧЁТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ.

Расчёт токов короткого замыкания (ТКЗ) выполняется для обоснования выбора оборудования подстанций и средств релейной защиты и автоматики.

При расчёте ТКЗ обычно используются следующие допущения:

- Не учитываются токи нагрузок, токи намагничивания трансформаторов, ёмкостные токи линий электропередач;

- Не учитываются активные сопротивления генераторов;

- Трёхфазная сеть рассматривается, как строго симметричная.

Схема замещения для расчёта ТКЗ составляется по расчётной схеме электрической сети. Все элементы сети замещаются соответствующим сопротивлением и указываются ЭДС источников питания. Затем схема сети сворачивается относительно точки КЗ, источники питания объединяются и находится эквивалентная ЭДС схемы Еэкв и результирующее сопротивление сети от источников питания до точки КЗ Zэкв. По найденным результирующим ЭДС и сопротивлению находится периодическая составляющая суммарного тока короткого замыкания:

(5.1)

Ударный ток короткого замыкания определяется как

(5.2),

где

- ударный коэффициент, который составляет
(табл.5.1).

Расчёт ТКЗ выполняется для наиболее экономичного варианта развития электрической сети (вариантI рис.2.1) с установкой на подстанции 10 двух трансформаторов ТРДН-25000/110. Схема замещения сети для расчёта ТКЗ приведена на рис. 5.1. Синхронные генераторы в схеме представлены сверхпереходными ЭДС и сопротивлением

(для блоков 200МВт равным 0,19о.е. и приведёнными к номинальному генераторному напряжению 15,75кВ). Параметры трансформаторов в расчётной схеме приведены к номинальному высшему напряжению, параметры линий электропередач определены по удельным сопротивлениям соответствующих сетей.

Определение периодической составляющей суммарного тока КЗ выполняется с использованием комплекса программы «TKZ3000» . Основные результаты расчёта токов приведены в таблице 5.1 и в приложении I-2.

Таблица 5.1

Токи трёхфазного короткого замыкания.

Режим

Точка КЗ

Uном, кВ

Jmax, кА

Jуд, кА

1. Параллельная работа трансформаторов с высокой и низкой стороны.

10

15

110

10

4.152

16.349

10.082

39.698

2. Раздельная работа трансформаторов.

10

15

110

10

4.152

9.957

10.082

24.177

3. Параллельная работа трансформаторов с высокой и низкой стороны, питание по одной ЛЭП.

10

15

110

10

3.377

15.119

8.200

36.712

4. Раздельная работа трансформаторов по низкой стороне и параллельная работа трансформаторов по высокой стороне, питание по одной ЛЭП.

10

15

110

10

3.377

9.489

8.200

23.041

6. ГЛАВНАЯ СХЕМА ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ.

6.1. Основные требования к главным схемам распределительных устройств.

Главная схема (ГС) электрических соединений энергообъекта – это совокупность основного электротехнического оборудования, коммутационной аппаратуры и токоведущих частей, отражающая порядок соединения их между собой.

В общем случае элементы главной схемы электрических соединений можно разделить на две части:

- Внешние присоединения (далее присоединения);

- Генераторы, блоки генератор-трансформатор, линия электропередач, шунтирующие реакторы;

- Внутренние элементы, которые в свою очередь можно разделить на:

Схемообразующие - элементы, образующие структуру схемы (коммутационная аппаратура – выключатели, разъединители, отделители и т.д., и токоведущие части – сборные шины, участки токопроводов, токоограничивающие реакторы);

- Вспомогательные – элементы, предназначенные для обеспечения нормальной работы ГС (трансформаторы тока, напряжения, разрядники и т.д.).

Тенденция концентрации мощности на энергетических объектах остро ставит задачу проблемы надёжности и экономичности электрических систем (ЭЭС) в целом и в частности, проблему создания надёжных и экономичных главных схем электрических соединений энергообъектов и их распределительных устройств (РУ).

Благодаря уникальности объектов и значительной неопределённости исходных данных процесс выбора главной схемы – всегда результат технико-экономического сравнения конкурентно способных вариантов, цель которого – выявить наиболее предпочтительный из них с точки зрения удовлетворения заданного набора качественных и количественных условий. Учёт экономических, технических и социальных последствий, связанных с различной степенью надёжности ГС, представляет в настоящее время наибольшую сложность этапа технико-экономического сравнения схем. Это связано, в первую очередь, с недостаточностью исходных данных (особенно статистических характеристик надёжности), сложностью формулирования и определения показателей надёжности ГС в целом и ущербов от недоотпуска электроэнергии и от нарушений устойчивости параллельной работы ЭЭС.

Основные назначения схем электрических соединений энергообъектов заключается в обеспечении связи присоединений между собой в различных режимах работы. Именно это определяет следующие основные требования к ГС:

- Надёжность – повреждение в каком-либо Присоединении или внутреннем элементе, по возможности, не должны приводить к потере питания исправных присоединений;

- Ремонтопригодность – вывод в ремонт, какого либо Присоединения или внутреннего элемента не должны, по возможности, приводить к потере питания исправных присоединений и снижению надёжности их питания;

- Гибкость – возможность быстрого восстановления питания исправных присоединений;

- Возможность расширения – возможность подключения к схеме новых присоединений без существенных изменений существующей части;

- Простота и наглядность – для снижения возможных ошибок эксплуатационного персонала;

- Экономичность – минимальная стоимость, при условии выполнения выше перечисленных требований.

Анализ надёжности схем электрических соединений осуществляется путём оценки последствий различных аварийных ситуаций, которые могут возникнуть на присоединениях и элементах ГС. Условно аварийные ситуации в ГС можно разбить на три группы:

- аварийные ситуации типа «отказ» - отказ какого-либо Присоединения или элемента ГС, возникающий при нормально работающей ГС;

- аварийные ситуации типа «ремонт» - ремонт какого-либо Присоединения или элемента ГС;

- аварийные ситуации типа «ремонт+отказ» - отказ какого-либо Присоединения или элемента ГС, возникающий в период проведения ремонтов элементов ГС.

Все известные в настоящее время ГС основаны на следующих принципах подключения присоединений:

- присоединение коммутируется одним выключателем;

- присоединение коммутируется двумя выключателями;

- присоединение коммутируется тремя и более выключателями;

В настоящее время разработано минимальное количество типовых схем РУ, охватывающих большинство встречающихся в практике случаев проектирования ПС и переключательных пунктов и позволяющих при этом достичь наиболее экономичных унифицированных решений. Для разработанного набора схем РУ выполняются типовые проектные решения компоновок сооружений, установки оборудования, устройств управления, релейной защиты, автоматики и строительной части ПС.

Применение типовых схем является обязательным при проектировании ПС. Применение нетиповых схем допускается при наличии соответствующих технико-экономических обоснований.

Проектирование схем РУ ПС сводится к выбору схемы из числа типовых в соответствии с правилами их применения.

6.2. Выбор схемы распределительного устройства высокого напряжения (РУВН).

К РУВН проектируемой подстанции подключаются две ВЛ и два трансформатора.

Подстанция относится к классу тупиковых подстанций. Для данного класса напряжения, набора внешних присоединений и мощности трансформаторов, с учётом того, что применение отделителей в условиях холодного климата не рекомендуется, принимаем к установке на проектируемой подстанции схему два блока линия трансформатор с неавтоматической перемычкой. (рис.6.1).

В нормальном режиме все коммутационное оборудование включено, за исключением разъединителей QS7 в ремонтной перемычке. ВЛ W1, W2 – линии, связывающие проектируемую подстанцию с энергосистемой.

Рассмотрим последствия аварийных ситуаций в данной схеме:

Отказ одного из трансформаторов (предположим Т1). При КЗ в Т1 происходит отключение выключателя Q1, питание потребителей подстанции осуществляется через Т2 с учётом его перегрузочной способностью.