Смекни!
smekni.com

Расчет спутниковой линии связи Алматы Лондон (стр. 4 из 13)

Рисунок 5. - Зависимости погонного ослабления уровня сигналов от частоты при стандартном давлении воздуха, температуре 20° С и концентрации водяного пара 7,5 г/м3

Величина ослабления сигнала Аа, дБ, определяется следующими формулами

[5]:

Аа=(һо2γо2+һн2оγ2о)/sin Ө при Ө>10 (11)

Aa=√Re cosӨ{γHо2√ho2Fo2+ γHо2√hH2oFh2o} при 0<Ө<10, (12)

где Ө—угол места антенны земной станции;

Rе —эквивалентный радиус Земли с учетом рефракции (8500 км);

γо2—погонное ослабление в кислороде, дБ/км, определяется по графику на рисунке 5 в зависимости от частоты;

γ2O —погонное ослабление в водяном паре, дБ/км, определяется по р/7,5, учитывающее влагосодержание водяного пара р, которое может отличаться от значения 7,5 г/м3, указанного на графике;

Һо2— эквивалентная высота кислорода, км; Һo2=6 км при Г<50 ГГц; ҺН2О - эквивалентная высота водяного пара, км.

һН2О=2,2+3/[3+(f-22,3)2]+0,3/[1+(f-118,3)2+1/[1+(f-323,8)2], (13)

FO2H2O=[0,661tg Ө√Re/hO2,HO2+0,339√(tgӨ/hO2)2+5,51] (14)

В приложении В на мировой карте показаны среднемесячные значения концентрации водяного пара р атмосферы в августе. Эти значения можно использовать в расчетах как наибольшие.

Найдем величины ослабления сигнала, вызванного поглощением энергии радиоволн в газах атмосферы, для обоих участков, используя формулы (11 - 14).

Для участка 1:

Из рисунка 5: γO2=0,007 дб/км,

γН2О=0,003*10/7,5=0,004 дБ/км,

ҺН20=2,2+3/[3+(6383-22,3)2]+0,3/[1+(6383-118,3)2]+1/[1+(6383323,8)2]=2,2км.

Тогда: Аа=(6*0,007+2,2*0,004)/sin38,5=1,02 что соответствует 0,08 дБ .

Для участка 2

γO2=0,007 дб/км,

γH2O=0,003* 10/7,5=0,004 дБ/км,

һH2O=2,2+3/[3+(3794-22,3)2]+0,3/[1+(3794-118,3)2]+1/[1+(3794-23,8)2]=2,2 км,

РO2=[0,661 tg8 √8500/6 +0,339√(tg√8500/6)2 +5,51]=0,18,

РH2O=[0,661 tg8 √8500/2,2 +0,339√(tg√8500/6)2 +5,51]=0,11.

Тогда:

Аа=√8500соs8 [0,007 √6 0,18+0,004 √2,2 0,11 ]=0,34 или -4,67 дБ.

4.2 Расчет ослабления уровня сигнала, в зоне дождя

Ослабление уровня сигнала при прохождении радиоволн через зону дождя вызвано рассеянием электромагнитной энергии частицами, при этом каждая частица рассеивает энергию в разных направлениях, вследствие чего энергия, приходящая в точку приема, уменьшается. Кроме того, энергия поглощается в частицах дождя, что вызывает ослабление уровня сигнала. Интенсивность рассеяния и поглощения зависит от количества частиц в единице объема, отношения размеров этих частиц к длине волны, размеров области, занятой частицами, и их электрических свойств, зависящих от температуры. Количество частиц в единице объема и их размеры характеризуются интенсивностью дождя.

Интенсивность дождя различна в разных географических районах и в разное время года. В приложении Г, взятом из Отчета 563-—2 МККР, на мировой карте показаны дождевые климатические зоны, обозначенные буквами от А до Р, а в таблице данного же приложения приведены значения интенсивности дождя, превышаемые в указанные проценты времени среднего года. Лондон относится согласно карте к зоне F, тогда согласно таблице в приложении В, интенсивность дождя на участке ИСЗ - ЗС1 составляет Іт = 28 мм/ч.

В приложении Д на карте СССР показаны дождевые климатические районы, обозначенные цифрами от 1 до 29, а в таблице 3.2 [5] даны значения интенсивности дождя, превышаемые воопределенном проценте времени «худшего» месяца. Согласно упомянутым картам и таблице, для участка ЗС 1 - ИСЗ интенсивность дождя равна Іт=22 мм/ч.

На рисунке 6, показаны зависимости погонного ослабления сигнала в зоне дождя γд частоты и интенсивности дождя [5].

Чтобы определить ослабление сигнала в зоне дождя на линии Земля — космос (или Космос — Земля), нужно знать длину пути сигнала в зоне дождя. Очевидно, уровень зоны дождя определяется высотой изотермы 0°С (или уровнем замерзания), ниже которой ледяные капли дождя переходят в жидкую фазу. Согласно Отчету 563 — 2 МККР средняя высота нулевой изотермы определяется формулой (в километрах) [5]:

ҺF=5,1-2,15lg(1+10)(ψ-27)/25, (15)

где ψ — широта земной станции в градусах.

Высота дождя определяется умножением Һf на эмпирический коэффициент, который учитывает, что в тропических зонах высота дождя часто значительно ниже уровня замерзания:

Һд=С*һF, (16)

где С=0,6 при 0°≤│ψ│<20°;

С=0,6+0,02(│ψ│-20) при 20°≤│ψ│≤40°

С=1 при │ψ│>40°

Необходимо также учесть пространственную неравномерность дождя в горизонтальном направлении. В Отчете 564—2 МККР предложен следующий метод расчета ослабления сигнала в зоне дождя [5]:

а) определяется высота нулевой изотермы, км, в зависимости от широты
станции по (16);

б) определяется высота дождя, км, по (17);

в) определяется длина пути сигнала, км, по наклонной трассе от станции до высоты дождя (км):

dд=2(һд-һо)/[sin2Ө+2(һд-һо)/Rc] 1/2+sinӨ при Ө< 10,

dд=(һд-һо)/sinӨ при Ө> 10, (17)

где Һ0— высота станции над уровнем моря;

Ө- угол места антенны;

Rc=8500 км — эквивалентный радиус Земли;

г) горизонтальная проекция наклонной трассы, км,

dG=dдcosӨ (18)

д) фактор уменьшения, учитывающий неравномерность дождя для 0,01% времени,

r0.01=90/(90+4dG); (19)

е) определяется интенсивность дождя Іm, мм/ч, превышаемая в 0,01% среднего года (с временем интеграции 1 мин) для климатического района, где находится станция;

ж) определяется погонное ослабление сигнала в зоне дождя үд, дБ/км, для данной частоты сигнала и интенсивности дождя по графикам на рисунке 6;

з) определяется ослабление сигнала в дожде, дБ, превышаемое в 0,01 % среднего года,

Ад0.01дdдr0.01. (20)

Рисунок 6. Погонное ослабление сигнала взоне дождя в зависимости от частоты

Используя вышепривиденный метод найдем значения ослабления в зоне дожде для обоих участков.

Для участка 1:

һғ=5,1-2,151§(1+10)(43,13-27)/25=3,52 км,

һд=1*3,52=3,52км,

dд=(3,52-0,87)/sin38,5=4,26 км,

dG=4,26соs538,5=3,33 км,

r0.01=90/(90+4*3,33)=0,87,

Іm=22 мм/ч,

γд=0,07дБ=1,02,

Ад0.01=1,02*4,26*0,87=3,78 или 5,77 дБ .

Для участка 2:

һғ=5,1-2,151§(1+10)(51,.30-27)/25=2,9км,

һд=1*2,9=3,52км,

dд=2(2,9-0,2)/sin2Ө+2(2,9-0,2)/8500]1/2+sin8=12,86км,

dG =12,86соs8=12,73 км,

r0.01=90/(90+4*12,73)=0,64,

Іm=28 мм/ч,

γд =0,12 дБ=1,03,

Ад 0.01=1,03*12,86*0,64=8,48 или 9,28 дБ.

Таким образом, дополнительные потери на участках линии связи обусловлены главным образом влиянием двух факторов, рассмотренных выше. Их можно определить по формуле:

Для участка 1 :

Lдоп.1а1д1,

Lдоп.1а1д1=1,02*3,78=3,85 или 5,85 дБ,

Для участка 2:

Lдоп.2а2д2=0,34*8,48=2,9 или 4,61 дБ.


5 Расчет шумов

5.1 Расчет шумов

При расчете энергетики спутниковых радиолиний важно определить полную мощность шумов, создаваемых на входе приемного устройства спутника и земной станции различными источниками. Как показано в § 3.2,

мощность шума на входе приемника может быть определена по формуле (5).

Полная эквивалентная шумовая температура приемной системы, состоящей из антенны, волноводного тракта и собственно приемника, пересчитанная ко входу приемника [5]:

ТАŋво(1-ŋв)+ТПр, (21)

где ТА — эквивалентная шумовая температура антенны;

Т0 — абсолютная температура среды (290 К);

Тпр—эквивалентная шумовая температура собственно приемника,

обусловленная его внутренними шумами;

ŋв—коэффициент передачи волнового тракта.

Эквивалентная шумовая температура антенны может быть представлена в виде составляющих:

ТА= Тка3а.зш.Аоб. (22)

которые обусловлены различными факторами: приемом космического радиоизлучения- Тк; излучением атмосферы с учетом гидрометеоров - Та;

излучением земной поверхности, принимаемым через боковые лепестки антенны — Т3; приемом излучения атмосферы, отраженного от Земли — Та.3; собственными шумами антенны из-за наличия потерь в ее элементах—ТШ.А;

влиянием обтекателя антенны (если он имеется) — Тоб. Общая методика, определения этих составляющих основана на том, что антенна, находящаяся в бесконечном объеме поглощающей среды с однородной кинетической температурой, при термодинамическом равновесии поглощает и переизлучает мощность, равную мощности излучения. В этом случае

ТА=(1/4π)Tя(β,ψ)G(βψ)dΩ

где Tя(β,ψ) — яркостная температура излучения в направлении β,ψ в сферической системе координат;

G(βψ)— усиление антенны (относительно изотропного излучателя) в том же направлении.

Понятие «яркостная температура» вводится для характеристики источников излучения; она определяется как температура абсолютно черного тела, имеющего на данной частоте и в данном направлении такую же яркость, как рассматриваемый источник.

Для характеристики источников излучения с неравномерным распределением яркостной температуры используется понятие усредненной или эффективной температуры излучения