Для нормальной работы цифровой системы связи требуется, чтобы шум не превышал некоторого заданного значения. При фиксированной скорости передачи информации и пренебрежении шумами самого светового сигнала шумы фотоприемника можно считать постоянными и не зависящими от мощности света. Очевидно, что в этом случае Куменьшается при увеличении амплитуды полезного сигнала и увеличивается при его уменьшении. Минимальное значение средней мощности оптического излучения, необходимое для передачи сигналов с заданным коэффициентом ошибок, называется чувствительностью оптического приемника. В цифровых системах голосовой связи максимально допустимое значение коэффициента ошибок обычно принимается равным 10. Чувствительность может выражаться в линейных единицах, производных от ватта (нВт, мкВт) или в логарифмических – децибелах по отношению к милливатту (дБм). Реальная чувствительность приемников определяется многими факторами: нормируемым значением коэффициента ошибок, формой импульса, скоростью передачи информации, шириной полосы приемника и шумами оптического изломами оптического излучения[4]. Поэтому практически в спецификациях чувствительность приемника задается только для вполне определенного передатчика, скорости передачи двоичных сигналов и их формы. С увеличением скорости передачи информации чувствительность ухудшается (т.е. возрастает) в линейных единицах приблизительно пропорционально скорости B [бит/с]. Чувствительность современных цифровых высокоскоростных приемников на основе in-фотодиодов определяется тепловыми шумами трансимпедансного усилителя. В отсутствии шумов чувствительность фотоприемника определяется квантовыми свойствами светового излучения и называется квантовым пределом чувствительности.
Итак, была рассмотрена общая схема передачи сообщений. Полученные на выходе устройств преобразования сообщения в сигналы первичные сигналы должны быть переданы системой электросвязи, т.е. сигнал есть объект транспортировки, а техника связи есть по существу техника транспортировки (передачи) сигнала. Для передачи сигнала в системе электросвязи необходимо воспользоваться переносчиков, в качестве которого возможно использование тех материальных объектов, которые имеют свойство перемещаться в пространстве. Т.е. в пункте передачи первичный сигнал необходимо преобразовать в сигнал, удобный для его передачи по соответствующей среде распространения, но наделенный в то же время признаками первичного сигнала. В пункте приема выполняется обратное преобразование[5].
ГЛАВА II
2.1. Основные принципы цифровой системы передачи данных
Структура первичной сети предопределяет объединение и разделение потоков передаваемой информации, поэтому используемые на ней системы передачи строятся по иерархическому принципу. Применительно к цифровым системам этот принцип заключается в том, что число каналов цифровой системы передачи (далее – ЦСП), соответствующее данной ступени иерархии, больше числа каналов ЦСП предыдущей ступени в целое число раз.
Аналоговые системы передачи с ЧРК также строятся по иерархическому принципу, но в отличие от ЦСП для них ступенями иерархии являются не сами системы передачи, а типовые группы каналов. Цифровая система передачи, соответствующая первой ступени иерархии, называется первичной; в этой ЦСП осуществляется прямое преобразование относительно небольшого числа первичных сигналов в первичный цифровой поток. Системы передачи второй ступени иерархии объединяют определенное число первичных потоков во вторичный цифровой поток и т.д.
В рекомендациях МСЭ-Т представлено два типа иерархий ЦСП: плезиохронная цифровая иерархия PDH и синхронная цифровая иерархия SDH. Первичным сигналом для всех типов ЦСП является цифровой поток со скоростью передачи 64 кбит/с, называемым основным цифровым каналом (ОЦК). Для объединения сигналов ОЦК в групповые высокоскоростные цифровые сигналы используется принцип временного разделения каналов.
Новые технологии телекоммуникаций стали развиваться в связи с переходом от аналоговых к цифровым методам передачи данных, основанных на импульсно-кодовой модуляции (далее - ИКМ) и мультиплексировании с временным разделением каналов. В плезиохронной цифровой иерархии PDH мультиплексор сам выравнивает скорости входных потоков путем добавления нужного числа выравнивающих бит в каналы с меньшими скоростями передачи. Отсюда следовали недостатки PDH - невозможность вывода потока с меньшей скоростью из потока с большей скоростью передачи без полного демультиплексирования этого потока и удаления выравнивающих бит. Недостатки PDH вызвали необходимость в разработке синхронной цифровой иерархии SDH, которая позволила вводить/выводить входные потоки без необходимости проводить их сборку/разборку и систематизировать иерархический ряд скоростей передачи.
SDH имеет следующие преимущества перед PDH :
- упрощение сети, вызванное возможностью вводить/выводить цифровые потоки без их сборки или разборки как в PDH;
- помехозащищенность - сеть использует волоконно-оптические кабели (BOК), передача по которым практически не подвержена действию электромагнитных помех;
- выделение полосы пропускания по требованию - этот сервис теперь может быть предоставлен в считанные секунды путем переключения на другой (широкополосный) канал;
- прозрачность для передачи любого трафика - факт, обусловленный использованием виртуальных контейнеров для передачи трафика, сформированного другими технологиями, включая самые современные технологии Frame Relay, ISDN и ATM;
- универсальность применения - технология используется для создания глобальных сетей или глобальной магистрали и для корпоративной сети, объединяющей десятки локальных сетей;
- простота наращивания мощности - при наличии универсальной стойки для размещения аппаратуры переход на следующую более высокую скорость иерархии можно осуществить просто вынув одну группу функциональных блоков и вставив новую (рассчитанную на большую скорость) группу блоков.
SDH позволяет организовать универсальную транспортную систему, охватывающую все участки сети и выполняющую функции как передачи информации, так и контроля и управления. Она рассчитана на транспортирование всех сигналов PDH, а также всех действующих и перспективных служб, в том числе и широкополосной цифровой сети с интеграцией служб (ISDN), использующей асинхронный способ переноса (АТМ).
Линейные сигналы SDH организованы в так называемые синхронные транспортные модули STM (Synchronous Transport Module) (См. Табл. 1.1). Первый из них - STM-1 - соответствует скорости передачи информации 155 Мбит/с. Каждый последующий имеет скорость в 4 раза большую, чем предыдущий, и образуется побайтным синхронным мультиплексированием. В настоящее время эксплуатируются или разрабатываются SDH системы со скоростями, соответствующими окончательной версии SDH иерархии: STM-1, STM-4, STM-16, STM-64, STM-256 или 155,52, 622,08, 2488,32, 9953,28, 39813,12 Мбит/с. Три первых уровня (называемых по-старому первым, четвертым и шестнадцатым) были стандартизованы в последней версии ITU-T Rec. G.707.
Таблица 1.1.
Уровень | Модуль | Скорость передачи |
1 | STM-1 | 155,52 Мбит/с |
4 | STM-4 | 622,08 Мбит/с |
16 | STM-16 | 2488,32 Мбит/с |
64 | STM-64 | 9953,28 Мбит/с |
256 | STM-256 | 39813,12 Мбит/с |
Мультиплексирование STM-1 в STM-N или STM-N в STM-4*N осуществляется непосредственно по следующей схеме:
. Увеличение скорости передачи приводит к уменьшению длительности импульсного сигнала. Т.к. при распространении по ОВ происходит «размывание» и «наплывание» импульсов друг на друга, при слишком длинной ВОЛС приемник излучения уже не может распознать отдельные импульсы. В результате усиливаются требования к ВОЛС по дисперсии, которая и определяет увеличение длительности.В теории электросвязи существует несколько способов увеличения пропускной способности систем передачи информации. Большинство из них сводится к одному из методов уплотнения компонентных информационных потоков в один групповой, который передается по линии связи.
Метод временного мультиплексирования (ТDМ)
В настоящее время метод временного уплотнения информационных потоков (TDM — Time Division Multiplexing) является наиболее распространенным. Он применяется при передаче информации в цифровом виде. Суть его состоит в следующем. Процесс передачи разбивается на ряд временных циклов, каждый из которых в свою очередь разбивается на N субциклов, где N — число уплотняемых потоков (или каналов). Каждый субцикл подразделяется на временные позиции, т.е. временные интервалы, в течение которых передается часть информации одного из цифровых мультиплексируемых потоков. Кроме того, некоторое число позиций отводится для идентификационных синхроимпульсов, вставок и цифрового потока служебной связи.
Метод временного уплотнения подразделяется на два вида — асинхронное или плезиохронное, временное мультиплексирование (PDH, ATM) и синхронное временное мультиплексирование (SDH). Современные технологии позволяют обеспечить скорость передачи группового сигнала 10 Гбит/с (STM-64). Несколько лет назад считалось, что это предел для электронных устройств мультиплексирования. Однако, благодаря развитию новых электронных технологий (полупроводниковые структуры на основе арсенида галлия, микровакуумных элементов) уже созданы лабораторные образцы электронных мультиплексоров для скорости 40 Гбит/с (STM-256), подготовленные для серийного промышленного производства. Научные исследования в этой области продолжаются с целью дальнейшего увеличения скорости передачи.