Смекни!
smekni.com

Цифровая волоконно оптическая система передачи со скоростью 422 Мбит с для кабельного телевидения (стр. 7 из 10)

— ко­эффициент затухания, вызванный присутствующими в ОВ примесями, приводящими к дополнительному поглоще­нию оптической мощности, это ионы металлов (Fe, Cu, Ni, Mn, Cr), вызывающие поглощение в диапазоне длин волн 0,6-1,6 мкм, и гидроксильные группы (ОН), из-за которых появляются резонансные всплески затухания
на длинах волн 0,75 мкм, 0, 97 мкм и 1,39 мкм.

— дополнительные потери, определяемые деформацией ОВ в процессе изготовления кабеля, вызванной скруткой, изгибом, отклонением от прямолинейного расположения и термомеханическими воздействиями, имеющими место при наложении оболочек и покрытий на сердцевину волокна при изготовлении ОК (их называют кабельными).

— коэффициент затухания, зависящий от длины волны оптического из­лучения и за счет поглощения в инфракрасной области возрастающий в показательной степени с ростом длины волны.

В настоящее время в технике связи в основном применяются квар­цевые ОВ, область эффективного использования которых находится в диапазоне длин волн до 2 мкм. На более длинных волнах в качестве материала для волокна используются галоидные, халькогенидные и фторидные стекла. По сравнению с кварцевыми волокнами они обладают большей прозрачностью и обеспечивают снижение потерь на несколько порядков. С появлением ОВ из новых материалов становится реальным создание ВОЛС без ретрансляторов.

Затухание оптического волновода учитывается при расчете энергетического бюджета.

Затухание оптоволоконной линии с учетом потерь на разъемных соединениях и сростках (неразъемных соединениях) определяется по формуле:

(3.1.2)

где

и
- значение потерь на сростке и разъеме соответственно,
и
- количество сростков и разъемных соединений на протяжении оптоволоконной линии длиной L,
- километрический коэффициент затухания оптического волокна, измеряемый в дБ/км.

Тогда энергетический бюджет рассчитывается по формуле:

(3.1.3)

где

и
- мощность источника оптического излучения и чувствительность фотоприемника в дБ соответственно;
и
- эксплуатационный запас для аппаратуры и для кабеля, (дБ), которые берутся из технических условий (контрактных спецификаций) для оборудования ВОЛС.

Дисперсия

Световой сигнал в цифровых системах передачи поступает в световод импульсами, которые вследствие некогерентности реальных источников излучения содержат составляющие с различной частотой. Уширение светового импульса, вызываемое различием времени распространения его спектральных и поляризационных компонент, и называется дисперсией.

Световая волна, распространяющаяся вдоль направления x, описывается уравнением:

(3.2.1)

где А - амплитуда световой волны;

- ее угловая частота, k - волновое число.

Если взять фиксированное значение фазы волны:

=const, (3.2.2)

то скорость перемещения фазы в пространстве или фазовая скорость будет:

. (3.2.3)

Световой импульс, распространяющийся в ОВ представляет собой суперпозицию электромагнитных волн с частотами, заключенными в интервале Δ

, которая называется группой волн вида (3.2.1). В момент времени t в разных точках для разных x волны будут усиливать друг друга, что приводит к появлению максимума интенсивности группы волн (центр группы волн), или ослаблять. Центр группы волн перемещается со скоростью:

, (3.2.4)

называемой групповой. Заменив k=2π/λ и выразив

, получим соотношение, выражающее зависимость групповой скорости от длины волны:

. (3.2.5)

Это и является причиной, приводящей к различию скоростей распространения частотных составляющих излучаемого спектра по оптическому волокну. В результате по мере распространения по оптическому волокну частотные составляющие достигают приемника в разное время. Вследствие этого импульсный сигнал на выходе ОВ видоизменяется, становясь «размытым». Это явление называется волноводной дисперсией, определяемой показателем преломления ОВ и шириной спектра излучения источника Δλ и имеющей размерность времени:

(3.2.6)

где Δ - относительная разность показателей преломления сердцевины и оболочки, L - длина ОВ,

- коэффициент волноводной дисперсии, называемый удельной волноводной дисперсией. Зависимость удельной волноводной дисперсии от длины волны показана на рис. 3.2.

Скорость распространения волны зависит не только от частоты, но и от среды распространения. Для объяснения этого явления электроны внутри атомов и молекул рассматриваются в теории дисперсии квазиупруго связанными. При прохождении через вещество световой волны каждый электрон оказывается под воздействием электрической силы и начинает совершать вынужденные колебания. Колеблющиеся электроны возбуждают вторичные волны, распространяющиеся со скоростью с, которые, складываясь с первичной, образуют результирующую волну. Эта результирующая волна распространяется в веществе с фазовой скоростью v, причем, чем ближе частота первичной волны к собственной частоте электронов, тем сильнее будут вынужденные колебания электронов и различие между v и c будет больше, что объясняет зависимость

. В результате смещения электронов из положений равновесия молекула вещества приобретает электрический дипольный момент. То есть при взаимодействии электромагнитной волны со связанными электронами отклик среды зависит от частоты светового импульса, что и определает зависимость показателя преломления от длины волны, которая характеризует дисперсионные свойства оптических материалов:

, (3.2.7)

где N - плотность частиц (число частиц в единице объема), m и е – масса и заряд электрона соответственно,

- резонансные длины волн,
- вынуждающие осцилляции электрические силы. В широком спектральном диапазоне, включающем обычный ультрафиолет, видимую область и ближнюю инфракрасную область, кварцевое стекло прозрачно и данная формула Солмейера применима с очень высокой точностью.

Явление, возникновение которого связано с характерными частотами, на которых среда поглощает электромагнитное излучение вследствие осцилляции связанных электронов, и которое определяет уширение длительности светового импульса после его прохождения через дисперсионную среду, называется в технике волоконно-оптической связи материальной дисперсией:

(3.2.8)

где коэффициент М(λ) называется удельной материальной дисперсией. На длине волны λ = 1276 нм у кварца величина

, следовательно коэффициент материальной дисперсии M(λ) = 0 (см. рис. 3.2). При длине волны λ > 1276 нм M(λ) меняет знак и принимает отрицательные значения, в результате чего на длине волны (примерно 1310 ± 10 нм для ступенчатого одномодового волокна) происходит взаимная компенсация М(λ) и N(λ). Длина волны, при которой это происходит, называется дли­ной волны нулевой дисперсии
. Обычно указывается некоторый диапазон длин волн, в пре­делах которых может варьироваться
для данного конкретного оптического волокна.

Результирующая дисперсия складывается из волноводной и материальной и называется хроматической дисперсией. Дисперсию в оптических волокнах принято характеризовать коэффициентом дисперсии или удельной дисперсией, измеряемом в пс/(нм·км). Коэффициент дисперсии численно равен увеличению длительности светового импульса (в пикосекундах), спектральная ширина которого равна 1 нм, после прохождения отрезка ОВ длиной 1 км. Значение коэффициента хроматической дисперсии определяется как D(λ) = М(λ) + N(λ). Удельная дисперсия имеет размерность пс/(нм·км).