· большее количество функциональных возможностей компоновки SMT элементов.
· компоненты могут легко размещаться с обеих сторон платы, что увеличивает плотность размещения.
· меньшая масса изделия и более низкий профиль изделия могут улучшать вибро и ударопрочностные свойства.
· Некоторые более новые компоненты доступны только в SMT корпусах.
· платы с SMT компонентами требуют специальной разработки и автоматизированного проектирования;
· у печатных плат SMT высокие требования к допускам и качеству изготовления;
· применение SMT компонентов для изготовления печатных плат является экономически оправданным при наличии оборудования автоматизации сборки;
· Некоторые разработки требуют применения DIP компонентов. Для сборки таких плат приходиться применять автоматическую установку SMT компонентов, что увеличивает издержки на выполнение дополнительных сборочных шагов. В таких случаях, есть такие платы, реализация которых на DIP компонентах имела бы меньшую стоимость сборочной операции.
· При применении SMT появляются дополнительные издержки на программирование процесса автоматизации сборки и изготовление трафаретов.
3.9.1 Типы SMT сборок
В электронной промышленности существует шесть общих типов SMT сборки, каждому из которых соответствует свой порядок производства. Когда разработчик выбирает тип сборки, его целью должна быть минимизация числа операций, так как каждая операция увеличивает промышленную стоимость. Существует специальный стандарт (National Technology Roadmap for Electronic), в котором представлены основные виды сборок, разбитые по классам.
Существуют следующие схемы поверхностного монтажа:
· Тип 1 - монтируемые компоненты установлены только на верхнюю сторону;
· Тип 2 - монтируемые компоненты установлены на обе стороны платы;
· Класс А - только through-hole (монтируемые в отверстия) компоненты;
· Класс В - только поверхностно монтируемые компоненты (SMD);
· Класс С - смешанная: монтируемые в отверстия и поверхностно монтируемы компоненты;
· Класс Х - комплексно-смешанная сборка: through-hole, SMD, fine pitch, BGA;
· Класс Y - комплексно-смешанная сборка: through-hole, surface mount, Ultra fine pitch, CSP
· Класс Z - комплексно-смешанная сборка: through-hole, Ultra fine pitch, COB, Flip Chip, TCP;
Варианты схем поверхностного монтажа:
1. SMT - Только верхная сторона
Рис. 3.2 – Установка SMT элементов на одну сторону платы
Этот тип не является общим так как большинство разработок требует некоторых DIP компонентов. Его называют IPC Type 1B.
Порядок проведения процесса:
· нанесение припойной пасты, установка компонентов, пайка, промывка.
Рис. 3.3 – Установка SMT элементов на обе стороны платы
На нижней стороне платы размещаются чип-резисторы и другие компоненты небольших размеров. При использовании пайки волной, они будут повторно оплавляться за счет верхнего (побочного) потока волны припоя. При размещение больших компонентов с обеих сторон, типа PLCC, увеличивают издержки производства, потому что компоненты нижней стороны должны устанавливаться на специальный токопроводящий клей. Данный тип называется IPC Type 2B.
Порядок проведения процесса:
· нанесение припойной пасты, установка компонентов, пайка, промывка нижней стороны;
· нанесение припойной пасты на верхнюю сторону печатной платы, установка компонентов, повторная пайка, промывка верхней стороны.
3. SMT верхняя сторона в первом случае и верхняя и нижняя во втором, но PTH только верхняя сторона.
Рис. 3.4 – Установка SMT элементов на обе стороны платы и PTH элементов на одну сторону платы
Этот метод установки используется, когда имеются DIP компоненты, в SMT сборке. Процесс включает размещение DIP компонентов, вставляемых в отверстия перед SMT пайкой. При использовании данного метода убирается лишняя операция пайки волной или ручной пайки PTH компонентов, что значительно уменьшает стоимость изделия. Первое требование - способность компонентов противостоять вторичной пайке. Размеры отверстия платы, контактные площадки и геометрия трафарета должны быть точно совмещены, чтобы достичь качественной пайки. Плата должна иметь сквозные металлизированные отверстия и может быть односторонней или двухсторонний, то есть компоненты могут размещаться как с верхней так и с нижней стороны.
Порядок обработки односторонней печатной платы:
· нанесение припойной пасты, установка SMT компонентов, установка PTH компонентов, пайка, промывка верхней стороны.
Порядок обработки двухсторонней печатной платы:
· нанесение припойной пасты, установка SMT компонентов, SMT пайка, промывка нижней стороны;
· установка PTH компонентов, пайка, промывка верхней стороны.
Рис. 3.5 – Установка SMT и PTH элементов на верхнюю сторону платы
Данный метод является смешанной технологией сборки. Все модули SMT и PTH установлены на верхней стороне платы. Допускается установка некоторых компонентов монтируемых в отверстия (PTH) на верхней стороне платы, где размещены SMT компоненты для увеличения плотности. Данный тип сборки называется IPC Type 1C.
Порядок проведения процесса:
· нанесение припойной пасты, установка, оплавление, промывка верхней части SMT;
· автоматическая установка DIP, затем осевых компонентов (такие как светодиоды);
· ручная установка других компонентов ;
· пайка волной PTH компонентов, промывка.
Рис. 3.6 – Установка SMT и PTH элементов на обе стороны платы
Установка поверхностно монтируемых и монтируемых в отверстия (DIP) компонентов с обеих сторон платы не рекомендуется из-за высокой стоимости сборки. Эта разработка может требовать большого объема ручной пайки. Также не применяется автоматическая установка PTH компонентов из-за возможных конфликтов с SMT компонентами на нижней стороне платы. Данный тип сборки называется IPC Type 2C.
Порядок проведения процесса:
· нанесение припойной пасты, установка, пайка, промывка верхней стороны SMT;
· нанесение специального токопроводящего клея через трафарет, установка, фиксация SMT;
· автоматическая установка DIP и осевых компоненты;
· маскирование всей нижней стороны PTH компонентов;
· ручная установка других компонентов;
· пайка волной PTH и SMT компонентов, промывка;
· ручная пайка нижней стороны PTH компонентов.
3.9.2 Установка компонентов на плату
Традиционные компоненты, монтируемые в отверстия, являются наиболее узким местом в процессе установки их на печатную плату. Это практически полностью исключает возможность автоматизации процесса. Гораздо проще и быстрее автоматизировать процесс установки поверхностно монтируемых компонентов.
Машины для автоматической установки работают по трем основным принципам:
· поочередная установка компонентов;
· поочередно-одновременная установка компонентов;
· одновременная установка компонентов;
В аппаратах поочередной установки один компонент все время устанавливается одной или двумя установочными головками. Поочередная установка, также может проводиться при помощи револьверной головки. В поочередно-одновременной установке несколько компонентов может быть установлено одновременно. Установочные машины одновременного типа, устанавливают все или возможно-большее количество компонентов за один раз.
Поочередные и поочередно-одновременные машины, также называются последовательными и их основное преимущество в гибкости настройки. Если машина поочередной установки оснащена револьверной головкой, скорость установки компонентов на печатную плату значительно возрастает. Эти машины могут устанавливать компоненты нескольких типов. Место установки компонента может быть легко изменено, а точность установки достаточно высока.
Машины одновременной установки компонентов значительно производительней. Скорость установки компонентов может достигать 300000 компонентов в час, однако эти машины не так просты и гибки в настройке. Если для изменения места установки компонента в машинах поочередного и поочередно-одновременного типа достаточно изменить программы, то для машины одновременной установки требуются значительные более сложные механические изменения. Поэтому, эти машины используются для особо больших партий изделий.
3.9.3 Нанесение припойной пасты
Для крепления компонентов на печатную плату используется метод нанесения припойной пасты. Это наиболее широко используемый метод установки компонентов. В этом методе, припойная паста наносится непосредственно на контактные площадки печатной платы.
Припойные пасты представляют собой смесь мелкодисперсного порошка материала припоя со связующей жидкой основой. При этом содержание порошка припоя составляет приблизительно 88 % от веса всей смеси (обычно этот показатель меняется в пределах от 85 до 92 %). Однако чаще всего состав припойных паст выражают через соотношение ингредиентов материала припоя. Так, например, 63/37 означает содержание в составе материала припоя 63 % олова и 37 % свинца, а 62/36/2 – 62 % олова, 36% свинца и 2 % серебра. Оба этих состава используются для приготовления припойных паст в SMT.