Если каналы одностороннего действия, то для определения числа потоков следует сложить строку и столбец соответствующей АТС. Если используются линии двухстороннего действия, то при расчете тракты между АТС следует сложить в строке, либо в столбце. Для расчета числа трактов Е1 на АТС, которая используется для организации УСС, следует учесть входящие тракты от других АТС для обслуживания нагрузки к спецслужбам.
Результаты определения числа потоков Е1 для каждой АТС приведены в таблице 4.1.
Таблица 4.1 Количество потоков Е1 между АТС и транспортным шлюзом.
АТС | АТС-1 | АТС-2 | АТС-3 | АТС-4 | АТС-5 | АМТС |
Кол-во Е1 | 70 | 63 | 59 | 53 | 52 | 27 |
Для преобразования трафика телефонной сети в пакетный на всех узлах РАТС и АМТС устанавливаются транкинговые шлюзы TG. Нагрузка, поступающая на транкинговый шлюз TG1, определяется по формуле 4.1 на основе числа потоков E1, приведенного в таблице 4.1:
(4.1)где:
- число потоков Е1, - удельная нагрузка одного канала, равна 0.8 Эрл.Аналогично рассчитывается нагрузка на остальные транкинговые шлюзы. Результаты расчетов сведены в таблицу 4.2.
Нагрузка, поступающая от шлюза в пакетную сеть, зависит от применяемых в шлюзе типов кодеков. В проекте рекомендуется использовать кодек G.711, скорость передачи на выходе которого равна 64 Кбит/с.
В пакетной телефонии один отсчёт кодека G.711 оцифровывает 10мс речи и формирует 80 байт закодированной информации. Для сохранения задержки оцифровки и пакетизации в допустимых пределах, в один пакет протокола реального времени помещаются два отсчёта кодека G.711, что составляет 160 байт полезной нагрузки протокола RTP. Скорость передачи пакетов RTP при этом равна 50 пакетов/с. С учётом избыточности, добавляемой протоколами RTP, UDP, IP, и на канальном и физическом уровне Ethernet, размер пакета, поступающего в среду передачи, составит 238 байт (1904 бит). Результирующая скорость информационного потока
на физическом уровне от одного голосового канала будет равна 95.2 Кбит/с.Транспортный ресурс физического уровня, необходимый для передачи в пакетную сеть трафика, поступающего на шлюз TG1 равен:
Мбит/с (4.2), Мбит/сИнтенсивность вызовов, поступающих на транкинговый шлюз TG1, рассчитывается по формуле:
выз. /ЧНН (4.3)где:
=40 - интенсивность вызовов, обслуживаемых одним каналом; - количество потоков E1, поступающих на шлюз от РАТС-1 (таблица 4.1) выз. /ЧННПри обслуживании типичного телефонного соединения число передаваемых сигнальных сообщений протокола M2UA составляет
, при средней длине пакетов на физическом уровне байт. В процессе установления и завершения вызова между гибким коммутатором SX и транкинговым шлюзом TG передаются сообщений MGCP со средней длиной пакета байта (также на физическом уровне Ethernet).Транспортный ресурс для сообщений сигнализации протоколов MGCP и М2UA, рассчитанный по формуле:
Мбит/с (4.4)где: k=1 - коэффициент использования ресурса;
- интенсивность вызовов, поступающих на транспортный шлюз TG1 (таблица 4.2); - результат приведения размерностей "байт в час" к "бит в секунду". Мбит/сОбщий транспортный ресурс для шлюза TG1, рассчитанный по формуле:
Мбит/с (4.5) Мбит/сИсходя из полученных результатов, следует выбрать тип интерфейса Fast Ethernet с пропускной способностью 100 Мбит/с. Количество интерфейсов определяется по формуле (4.6). Полезный транспортный ресурс интерфейса для передачи трафика реального времени составляет 40% от общей пропускной способности, что для Fast Ethernet равно
Мбит/с. Если транспортный ресурс шлюза превышает возможности одного интерфейса, следует выбрать достаточное количество интерфейсов, работающих в режиме разделения нагрузки. Следует также предусмотреть один дополнительный интерфейс для организации резервирования по схеме N+1. (4.6)Количество интерфейсов для транкингового шлюза TG1 будет равно:
Результаты расчетов транкинговых шлюзов сведены в таблицу 4.2.
Таблица 4.2 Транспортный ресурс транкинговых шлюзов.
Номер шлюза | Мбит/с | Мбит/с | Мбит/с | выз. /ЧНН | шт |
TG1 | 155.400 | 0.594 | 155.994 | 84000 | 5 |
TG2 | 139.86 | 0.535 | 140.395 | 75600 | 5 |
TG3 | 130.98 | 0.501 | 131.481 | 70800 | 5 |
TG4 | 117.66 | 0.49 | 118.15 | 63600 | 4 |
TG5 | 115.440 | 0.481 | 115.921 | 62400 | 4 |
TG6 | 59.94 | 0.229 | 60.169 | 32400 | 3 |
Итого | 719.28 | 2.83 | 722.11 | 388800 | 26 |
Расчет производительности гибкого коммутатора.
Интенсивность вызовов
, поступающих на гибкий коммутатор, можно вычислить по формуле (4.7) на основании данных таблицы 4.2 Следует учитывать, что вызов, поступивший от РАТС вызывающего абонента на один из транкинговых шлюзов, обязательно завершается на каком-то другом TG, связанном с РАТС вызываемого абонента. Поэтому суммарное число вызовов в ЧНН (итоговое ) при расчёте нагрузки на гибкий коммутатор следует разделить пополам: выз. /ЧНН (4.7),Параметры интерфейсов подключения к пакетной сети. Транспортный ресурс гибкого коммутатора, необходимый для передачи сообщений протокола M2UA, составляет:
бит/сАналогично, транспортный ресурс гибкого коммутатора, необходимый для передачи сообщений протокола MGCP, составляет:
бит/сИнтенсивность сигнального трафика требуется умножать на два, поскольку гибкий коммутатор при обслуживании одного вызова работает одновременно с двумя шлюзами (TG вызывающего и TG вызываемого абонента), и трафик от SX к каждому шлюзу идёт через один и тот же интерфейс гибкого коммутатора.
Суммарный минимальный полезный транспортный ресурс гибкого коммутатора, требуемый для обслуживания вызовов, составляет:
Мбит/сДля трафика с гарантированной полосой пропускания режима относительного времени, каким является трафик протоколов сигнализации, полезный транспортный ресурс одного интерфейса составляет 75% от полной пропускной способности, что для интерфейсов Fast Ethernet равно
Мбит/с. Исходя из этого, необходимое число интерфейсов гибкого коммутатора рассчитывается по следующей формуле: интерфейсaДополнительный интерфейс предусматривается с целью организации резервирования по схеме N+1.
Результаты расчётов, полученных в разделе 4, представленны на схеме сети NGN (рисунок 4.1).