Эти регуляторы имеют защиту от импульсных перенапряжений в бортовой сети и от обратного включения аккумуляторной батареи. Типовой мультифункциональный регулятор выполнен по гибридной толстопленочной технологии.
Широкое распространение также могут найти так называемые СР-регуляторы, которые представляют собой приборы высокой степени интеграции, имеющие вышеперечисленный набор функциональных возможностей, а также таймер и выключатель нагрузки. Также они характеризуются удвоенной величиной коэффициента температурной зависимости напряжения настройки и наличием режима плавного возбуждения. В данных регуляторах в случае увеличения падения напряжения в цепи связи выхода генератора и удаленной контролируемой точки бортовой сети выше допустимой величины или разрыва цепи, регулятор переходит на управление генератором путем регулирования напряжения на его выходе (местное регулирование). Режим плавного возбуждения генератора служит для стабилизации работы двигателя, особенно на оборотах до выхода на режим холостого хода (этап запуска двигателя). Процесс возбуждения генератора является лавинообразным и занимает достаточно короткий (по сравнению с запуском двигателя) промежуток времени, и заканчивается до того как двигатель выйдет на обороты холостого хода. В этом случае генератор, включенный в бортовую электрическую сеть, выполняет роль дополнительной нагрузки для двигателя, что затрудняет его запуск. СР – регуляторы после окончания работы таймера обеспечивают плавное нарастание среднего значения тока в обмотке возбуждения генератора от 0 до 100%. На этом этапе генератор вырабатывает и отдает в бортовую сеть меньше электрической энергии, чем требует подключенные потребители. Недостающую энергию в бортовую сеть отдает аккумулятор. Максимальная продолжительность промежутка плавного возбуждения генератора составляет порядка 10 с. На этапе плавного возбуждения генератора СР – регулятор следит за увеличением частоты вращения ротора; при достижении ротором частоты, равной 1800 об/мин процесс плавного возбуждения заканчивается.
При запуске двигателя стартер одновременно с коленчатым валом двигателя раскручивает и ротор генератора. Поскольку обмотка возбуждения подключена к источнику питания (аккумуляторной батарее и/или выводу генератора), то одновременно с запуском двигателя начинается процесс возбуждения генератора. Генератор в этот момент является дополнительной нагрузкой для стартера, требующей от него дополнительной мощности, а от аккумуляторной батареи - дополнительного запаса электрической энергии. Таймер, введенный в состав СР-регуляторов, задерживает момент подключения обмотки возбуждения к источнику питания, соответственно, задерживая момент возбуждения генератора, и облегчая тем самым запуск двигателя. При наличии таймера требуется меньшая мощность стартера и меньшая емкость аккумуляторной батареи.
СР-регуляторы напряжения и другие специальные мультифункциональные регуляторы носят возможность управлять выключателем нагрузки.
Назначение выключателя нагрузки состоит в том, чтобы подключать или отключать от бортовой сети второстепенные электрические нагрузки.
2.2 Описание метода регулирования напряжения с помощью широтно-импульсной модуляции
Данный метод основан на управлении транзистора импульсами с переменной скважностью при постоянной частоте этих импульсов. В зависимости от скважности импульсов производится регулирование протекающего через транзистор тока. То есть чем больше скважность (Q = Тпер/Ти), тем более закрыт транзистор и тем меньший протекает через него ток и, наоборот, чем меньше скважность импульсов, тем более открыт транзистор и тем больший ток протекает через него. На данном принципе и основано регулирование напряжения в бортовой сети автомобиля. С помощью широтно-импульсной модуляции производится управление работой выходного транзистора, который производит регулирование тока, протекающего через обмотку возбуждения генератора, который в свою очередь определяет напряжение на фазовых обмотках генератора. Структурная схема регулятора напряжения, использующего данный метод, представлена на рис.2.2.1. Применение широтно-импульсной модуляции в данной схеме снижает влияние на работу регулятора внешних воздействий, например, уровня пульсаций выпрямленного напряжения и т.п.
Сравнивая рис.2.2.1. с рис.2.1.1., можно провести аналогию: к измерительному элементу относится делитель напряжения 4, который формирует в зависимости от напряжения на входе микросхемы (на выходе генератора) определенный сигнал uизм. К элементу сравнения относятся следующие блоки: компаратор напряжения 5, цифровой счетчик 2 с резистивной матрицей 3, которые вместе формируют эталонное пилообразное напряжение. И, наконец, к регулирующему элементу относятся: триггерное устройство 8, выходной каскад 9, выходной транзистор 13, которые предназначены для изменения определенным образом тока, протекающего через обмотку возбуждения 14. Остальные блоки, расположенные на рис. 2.2.1., имеют какое-либо другое специальное или вспомогательное значение.
Рис.2.2.1. Структурная схема регулятора напряжения на основе ШИМ (1 – генератор прямоугольных импульсов; 2 – 5 – ти разрядный счетчик на Т-триггерах; 3 – резистивная матрица; 4 – резистивный делитель напряжения; 5 – компаратор напряжения; 6 – блок защиты 1; 7 – датчик температуры; 8 – триггерное устройство; 9 – выходной каскад; 10 – блок защиты 2; 11 – стабилизатор напряжения; 12 – гасящий диод; 13 – выходной n-p-n- транзистор; 14 – обмотка возбуждения генератора; 15 – интегральная микросхема регулятора напряжения)
Регулятор напряжения, принцип действия которого основан на широтно-импульсной модуляции, работает следующим образом.
Так как напряжение на выходе генератора сильно зависит от частоты вращения ротора генератора, величины тока через нагрузку, тока через обмотку возбуждения, то для регулирования и нормирования данного напряжения необходимо иметь эталонное напряжение, мало зависящее ото всех возможных факторов: питающего напряжения, тока нагрузки, величины магнитного потока в обмотке возбуждения и т.д. В рассматриваемом регуляторе напряжения роль такого устройства выполняют 5-ти разрядный счетчик цифровых импульсов на основе Т-триггеров 2, управление работой которых производится с помощью генератора прямоугольных импульсов 1 и резистивной матрицы 3, которые в совокупности формируют спадающее пилообразное напряжение. Данное пилообразное напряжение "насаживается" на постоянную составляющую, которая снимается с датчика температуры для согласования работы с компаратором напряжения 4. Так как перечисленные блоки питаются от стабилизатора напряжения 11, напряжение на выходе которого практически не зависит от внешних воздействий на регулятор, то пилообразное напряжение, формируемое данными блоками можно считать эталонным. Период "пилы" равен:
Тпилы = Тген * 25,
где Тпилы – период спадающего пилообразного напряжения; Тген - период импульсов тактового генератора 1.
Далее, для того чтобы произвести приведение в норму напряжения в бортовой сети автомобиля (в случае отклонения от номинального в ту или иную сторону) необходимо произвести сравнение напряжения в бортовой сети с эталонным напряжением uэт. для этой цели может быть служить компаратор напряжения 5, на один вход которого подается эталонное напряжение с формирователя пилообразного напряжения, а на другой – напряжение с резистивного делителя напряжения 4, предназначенного для формирования измерительного сигнала uизм, удобного для работы компаратора напряжения 5 и согласованного с постоянной составляющей эталонного пилообразного напряжения.
После сравнения эталонного напряжения с напряжением в сети автомобиля необходимо осуществить управление регулирующим элементом. Для управления регулирующим элементом – выходным транзистором предназначены триггерное устройство 8 и выходной каскад 9. В зависимости от результата сравнения компаратором напряжения 5 могут быть следующие результаты:
1) Если напряжение на входе микросхемы больше номинального напряжения, то делитель напряжения 4 формирует такой сигнал на входе компаратора, при котором на его выходе возникает уровень, закрывающий выходной транзистор 13, но для проверки работоспособности выходного транзистора цифровым счетчиком 2 образуется короткий импульс, равный времени в 1,5 раза большее, чем период тактовой частоты (благодаря управляющему RS-триггеру).
Если пренебречь этим коротким импульсом, то можно считать, что выходной транзистор будет полностью закрыт. В результате этого тока через обмотку возбуждения протекать не будет и напряжение в бортовой сети будет падать до тех пор пока не достигнет нормы.
1) Если напряжение на входе микросхемы будет меньше номинального, то делитель напряжения 4 сформирует сигнал на входе компаратора, при котором на его выходе возникает уровень, полностью открывающий выходной транзистор 13. В результате того, что выходной транзистор будет полностью открыт, через него, а, следовательно, и через обмотку возбуждения потечет ток, практически определяемый параметрами обмотки возбуждения. Из-за протекания этого тока по обмотке возбуждения напряжение на выходе генератора начнет повышаться.
2) Если напряжение на входе микросхемы будет соответствовать номинальному, то компаратор напряжения 5 сработает посередине периода пилообразного напряжения и на выходе компаратора будет наблюдаться сигнал частотой 1/Тпилы и со скважностью 2. Такой же сигнал будет и на выходном транзисторе 13. Напряжение, соответствующее данному режиму, называется напряжением настройки.
Для данного регулятора напряжения настройки должно быть равно uнастр = 14, 1 В ± 0,1 В.