Смекни!
smekni.com

Переходные процессы в линейных электрических цепях (стр. 4 из 9)

2. Зависимые начальные условия

На момент коммутации t=0 имеем

Отсюда получаем:

3. Принужденная составляющая тока в цепи:

где

Отсюда амплитуда принужденной составляющей тока

Мгновенное значение принужденной составляющей тока


4.5. Характеристическое уравнение и его корень, а также свободная составляющая тока не зависят от вида входного напряжения и определяются по ранее приведенным формулам:

6. Постоянная интегрирования

7. Закон изменения тока в цепи RL при подключении ее к источнику синусоидального напряжения

Ниже приведен пример 2.4 расчета переходных процессов в цепи RL при подключении ее к источнику синусоидального напряжения.

Из приведенных формул видно, что при подключении цепи RL к источнику синусоидального напряжения ток в переходном режиме содержит две составляющие: синусоиду и экспоненту и его значение, в первый момент после коммутации, зависит от фазы включения.


Если включение произошло в момент, когда y=f, то свободная составляющая будет отсутствовать и в цепи сразу будет установившийся режим (удачное включение). Наоборот, неудачное включение имеет место, когда начальная фаза входного напряжения будет y=f± 90°.

Если при этом постоянная времени велика, то в начальный момент после коммутации ток переходного режима может достигнуть почти удвоенной амплитуды принужденной составляющей, что наглядно показано на Рис.2.10, где ток переходного режима в 1,66 раза больше амплитуды принужденной составляющей.

2.6 Синтез цепи RC с заданными параметрами переходного процесса

Выше рассматривались переходные процессы при заданных параметрах RC-элементов.

На практике возникает необходимость в решении обратной задачи: рассчитать потребные значения RC-элементов, при которых обеспечивалась бы заданная длительность переходного процесса и заданное значение выходного напряжения, снимаемого с резистора.

Рассмотрим электрическую цепь, изображенную на Рис.2.11.


Рис. 2.11. Исходная схема для расчета неизвестных R1 и C

На вход этой цепи подается последовательность однополярных прямоугольных импульсов напряжением EB, длительностью ti, с частотой f и скважностью 2.

Для синхронного управления ключевыми схемами с помощью цепи Рис.2.11 необходимо сформировать остроконечные импульсы, длительность которых была бы во много раз меньше длительности прямоугольных импульсов на входе цепи. Другими словами, заряд и разряд конденсатора должен происходить за время много меньше, чем длительность прямоугольного импульса

где K<<1 - коэффициент длительности переходного процесса в цепи Рис.2.11.

При этом заданными величинами должны быть: сопротивление нагрузки R2, с которого снимается напряжение и максимальное значение U2 этого напряжение (U2<E).

Решение. Из условия задачи следует, что необходимо определить два параметра:

R1- балластное (регулировочное) сопротивление;

C- емкость конденсатора цепи Рис.2.11.

В соответствии с принятым алгоритмом расчета переходных процессов в цепях первого порядка получаем следующее.

1. Независимые начальные условия:

где U2 - потребное значение напряжения на нагрузке в момент коммутации.

2. Зависимые начальные условия.

К зависимым начальным условиям, в данном случае, относится напряжение на балластном сопротивление

. Для определения этого напряжения составим уравнение по второму закону Кирхгофа и рассмотрим его на момент коммутации (на момент воздействия первого импульса):


На момент воздействия первого импульса t=0 имеем

Поскольку UC(0)=0, U2(0)=U2, следовательно, U1(0) должно быть равным:

С другой стороны на момент t=0 можно записать

Разделив левые и правые части этих соотношений, получим:

Для определения потребного значения емкости примем во внимание, что длительность переходного процесса в спроектированной цепи должно составлять не более

Это означает, что должно выполняться равенство:

5*t=K*tiили 5*(R1+R2)*C=K*ti.

Отсюда получаем потребное значение емкости

Расчет законов изменения напряжений на емкости и резисторах R1, R2 в цепи Рис.2.11 можно производить по формулам, приведенным в примере 2.1. Однако, ограничимся расчетом потребных значений R1, C, но выполним электронное моделирование спроектированной цепи.

Результаты расчетов и электронного моделирования приведены в примере 2.5.

Из Рис.2.12, где приведены результаты электронного моделирования, видно, что для спроектированной цепи RC переходной режим является «штатным». Данную цепь можно рассматривать как генератор остроконечных импульсов или преобразователь напряжения: прямоугольные импульсы преобразуются в остроконечные.


Глава 3. Переходные процессы в цепях второго порядка

3.1 Общая характеристика переходных процессов в цепях второго порядка

Цепями второго порядка называются цепи, в которых содержится два накопителя энергии: индуктивность и емкость.

Электрические цепи второго порядка бывают разветвленными и неразветвленными. К неразветвленным цепям второго порядка относится последовательный колебательный контур. К разветвленным цепям второго порядка относятся Г-образные фильтры нижних и верхних частот.

Электромагнитные процессы в цепях второго порядка описываются дифференциальными уравнениями второго порядка.

Например, дифференциальное уравнение относительно тока в последовательном колебательном контуре можно получить из уравнения, составленного по второму закону Кирхгофа, для мгновенных значений тока и напряжений:

После дифференцирования (3.2) получим дифференциальное уравнение второго порядка относительно тока

Обозначим, как и ранее, искомый ток i(t) через Y и разделим левую и правую части (3.3) на L, получим дифференциальное уравнение второго порядка:

где - коэффициент затухания;

- резонансная частота контура;

- правая часть дифференциального уравнения (3.3).

Из курса математики известно, что решение дифференциального уравнения второго порядка, также как и первого, представляется в виде двух слагаемых:

где Yпр(t) - принужденная составляющая искомого тока или напряжения, которая зависит от вида источника напряжения, оставшегося в цепи после коммутации;

Yсв(t) - свободная составляющая, характер которой определяется только структурой цепи образовавшейся после коммутации.

Для решения дифференциального уравнения второго порядка, также как и первого, и по тем же правилам, составляется характеристическое уравнение, которое, в общем, имеет вид: