2. Зависимые начальные условия
На момент коммутации t=0 имеем
Отсюда получаем:
3. Принужденная составляющая тока в цепи:
где
Отсюда амплитуда принужденной составляющей тока
Мгновенное значение принужденной составляющей тока
4.5. Характеристическое уравнение и его корень, а также свободная составляющая тока не зависят от вида входного напряжения и определяются по ранее приведенным формулам:
6. Постоянная интегрирования
7. Закон изменения тока в цепи RL при подключении ее к источнику синусоидального напряжения
Ниже приведен пример 2.4 расчета переходных процессов в цепи RL при подключении ее к источнику синусоидального напряжения.
Из приведенных формул видно, что при подключении цепи RL к источнику синусоидального напряжения ток в переходном режиме содержит две составляющие: синусоиду и экспоненту и его значение, в первый момент после коммутации, зависит от фазы включения.
Если включение произошло в момент, когда y=f, то свободная составляющая будет отсутствовать и в цепи сразу будет установившийся режим (удачное включение). Наоборот, неудачное включение имеет место, когда начальная фаза входного напряжения будет y=f± 90°.
Если при этом постоянная времени велика, то в начальный момент после коммутации ток переходного режима может достигнуть почти удвоенной амплитуды принужденной составляющей, что наглядно показано на Рис.2.10, где ток переходного режима в 1,66 раза больше амплитуды принужденной составляющей.
2.6 Синтез цепи RC с заданными параметрами переходного процесса
Выше рассматривались переходные процессы при заданных параметрах RC-элементов.
На практике возникает необходимость в решении обратной задачи: рассчитать потребные значения RC-элементов, при которых обеспечивалась бы заданная длительность переходного процесса и заданное значение выходного напряжения, снимаемого с резистора.
Рассмотрим электрическую цепь, изображенную на Рис.2.11.
Рис. 2.11. Исходная схема для расчета неизвестных R1 и C
На вход этой цепи подается последовательность однополярных прямоугольных импульсов напряжением EB, длительностью ti, с частотой f и скважностью 2.
Для синхронного управления ключевыми схемами с помощью цепи Рис.2.11 необходимо сформировать остроконечные импульсы, длительность которых была бы во много раз меньше длительности прямоугольных импульсов на входе цепи. Другими словами, заряд и разряд конденсатора должен происходить за время много меньше, чем длительность прямоугольного импульса
где K<<1 - коэффициент длительности переходного процесса в цепи Рис.2.11.
При этом заданными величинами должны быть: сопротивление нагрузки R2, с которого снимается напряжение и максимальное значение U2 этого напряжение (U2<E).
Решение. Из условия задачи следует, что необходимо определить два параметра:
R1- балластное (регулировочное) сопротивление;
C- емкость конденсатора цепи Рис.2.11.
В соответствии с принятым алгоритмом расчета переходных процессов в цепях первого порядка получаем следующее.
1. Независимые начальные условия:
где U2 - потребное значение напряжения на нагрузке в момент коммутации.
2. Зависимые начальные условия.
К зависимым начальным условиям, в данном случае, относится напряжение на балластном сопротивление
. Для определения этого напряжения составим уравнение по второму закону Кирхгофа и рассмотрим его на момент коммутации (на момент воздействия первого импульса):На момент воздействия первого импульса t=0 имеем
Поскольку UC(0)=0, U2(0)=U2, следовательно, U1(0) должно быть равным:
С другой стороны на момент t=0 можно записать
Разделив левые и правые части этих соотношений, получим:
Для определения потребного значения емкости примем во внимание, что длительность переходного процесса в спроектированной цепи должно составлять не более
Это означает, что должно выполняться равенство:
5*t=K*tiили 5*(R1+R2)*C=K*ti.
Отсюда получаем потребное значение емкости
Расчет законов изменения напряжений на емкости и резисторах R1, R2 в цепи Рис.2.11 можно производить по формулам, приведенным в примере 2.1. Однако, ограничимся расчетом потребных значений R1, C, но выполним электронное моделирование спроектированной цепи.
Результаты расчетов и электронного моделирования приведены в примере 2.5.
Из Рис.2.12, где приведены результаты электронного моделирования, видно, что для спроектированной цепи RC переходной режим является «штатным». Данную цепь можно рассматривать как генератор остроконечных импульсов или преобразователь напряжения: прямоугольные импульсы преобразуются в остроконечные.
Глава 3. Переходные процессы в цепях второго порядка
3.1 Общая характеристика переходных процессов в цепях второго порядка
Цепями второго порядка называются цепи, в которых содержится два накопителя энергии: индуктивность и емкость.
Электрические цепи второго порядка бывают разветвленными и неразветвленными. К неразветвленным цепям второго порядка относится последовательный колебательный контур. К разветвленным цепям второго порядка относятся Г-образные фильтры нижних и верхних частот.
Электромагнитные процессы в цепях второго порядка описываются дифференциальными уравнениями второго порядка.
Например, дифференциальное уравнение относительно тока в последовательном колебательном контуре можно получить из уравнения, составленного по второму закону Кирхгофа, для мгновенных значений тока и напряжений:
После дифференцирования (3.2) получим дифференциальное уравнение второго порядка относительно тока
Обозначим, как и ранее, искомый ток i(t) через Y и разделим левую и правую части (3.3) на L, получим дифференциальное уравнение второго порядка:
где - коэффициент затухания;
- резонансная частота контура;
- правая часть дифференциального уравнения (3.3).
Из курса математики известно, что решение дифференциального уравнения второго порядка, также как и первого, представляется в виде двух слагаемых:
где Yпр(t) - принужденная составляющая искомого тока или напряжения, которая зависит от вида источника напряжения, оставшегося в цепи после коммутации;
Yсв(t) - свободная составляющая, характер которой определяется только структурой цепи образовавшейся после коммутации.
Для решения дифференциального уравнения второго порядка, также как и первого, и по тем же правилам, составляется характеристическое уравнение, которое, в общем, имеет вид: