Смекни!
smekni.com

Проектирование решетки диэлектрических стержневых антенн (стр. 2 из 2)


,

где R – фактор затухания, зависящий от типа волны,

, и диаметра стержня. Зависимость фактора затухания для волны Н11 от относительного диаметра стержня приведена на рис.3.

рис. 3

По графику находим, что для отношения

и для
R=0.65.

Тогда коэффициент затухания

равен:

Коэффициент фазы определяется соотношением

.
.

Для малого затухания

можно считать, что

,

где

.

Так как

, то мнимой частью данного выражения можно пренебречь.

Окончательно выражение для ДН имеет вид:

для плоскости Е

;

для плоскости Н

.

Диаграммы направленности (в декартовой системе координат) изображены на рис. 4(плоск.Е) и рис.5(плоск.Н).

рис.4


рис.5

ДН в полярной системе координат:

рис.6


рис.7

Ширина ДН на нулевом уровне определяется соотношением:

Ширина ДН на уровне половинной мощности определяется выражением:


2.2 РАСЧЕТ АНТЕННОЙ РЕШЕТКИ

Антенная решетка применяется в том случае, когда требуется сузить ДН, повысить КНД и уменьшит уровень боковых лепестков. ДН решетки можно представить как произведение

, где
– множитель одиночного излучателя;
­– множитель решетки.

В данной курсовой работе требуется спроектировать антенную решетку, которая представляет собой антенную решетку, которая схематически изображена на рис.8:

Здесь N1 – число элементов в строке, N2 – число элементов в столбце, d1 – расстояние между элементами (излучателями) в строке, d2 – расстояние между элементами в столбце.

Так как согласно заданию решетка синфазная, то расстояние между элементами следует выбирать оптимальным, т.к. в случае если это расстояние окажется больше, т.к. начнут появляться дифракционные лепестки.

ДН в плоскости Н согласно технического задания должна быть в 4 раза шире ДН в плоскости Е. Эту проблему можно было бы решить расположив элементы в пропорции 4N1=N2.Однако общее число излучателей, равное Nобщ=N1N2=50, также задано и накладывает дополнительные ограничения. Чтобы найти число излучателей в строках и столбцах нужно решить систему уравнений:

Решив ее получим не целочисленные значения, поэтому соотношение ДН в разных плоскостях можно соблюсти изменяя расстояние между излучателям в плоскости Н(расстояние между излучателями в плоскости Е – оптимальное).

Учитывая вышесказанное, принимается N1=5, N2 =10.

Оптимальное расстояние между излучателями определяется формулой:

Подставив в нее значения, получим:

см.

Ширина ДН решетки в плоскости Е определяется выражением

Соответственно для ширины ДН в плоскости Е получим:

Расстояние между излучателями в плоскости Н найдем из системы уравнений:

Выразив отсюда d1 получим:

см.

Множитель решетки при синфазном питании элементов имеет вид:

,

где

.

Тогда для плоскости Н он запишется так:


Для плоскости Е:

Как было сказано ранее, ДН антенны является произведением ДН одного излучателя на ДН множителя решетки.

Соответственно ДН антенны в плоскости Н:

В плоскости Е


рис.9

Уровень боковых лепестков для решетки с оптимальным расстоянием между излучателями характеризуется следующим соотношением:

Для числа излучателей >10 КНД определяется по формуле:

,

где D1 – КНД одного излучателя.

раз

.

Коэффициент усиления по определению – произведение КНД на КПД:

КПД определяется следующим выражением:

Коэффициент усиления с учетом потерь в диэлектрике:

раз

.

2.3 КОНСТРУКТИВНЫЙ РАСЧЕТ

Схема питания строки излучателей представлена на рис. 10

Направленный ответвитель распределяет энергию, поступающую от генератора, между излучателями в соответствии с выбранным соотношением мощности затем, через Н – тройники и плавные переходы от прямоугольного волновода к круглому, энергия поступает непосредственно к элементам решетки – диэлектрическим антеннам. Соединив таким образом излучатели в строке получим столбец из 5 волноводов, схема питания которого изображена на рис. 11.

рис.11


Излучатель представляет собой диэлектрический стержень, вставленный в круглый волновод. В круглом волноводе возбуждается волна

с помощью плавного перехода от прямоугольного волновода к круглому. Длину перехода круглого волновода в волновод заполненный диэлектриком стержня выберем
. Чертеж излучателя приведен на рис.12:

Для волны длиной 2.5 см используется прямоугольный волновод марки R120. Размеры волновода

,
. Чтобы от перехода прямоугольный – круглый волновод не было отражения длина его должна быть не меньше длины волны. Конструкция перехода приведена на рис.13.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе спроектирована антенная решетка диэлектрических стержневых антенн, удовлетворяющая заданным в техническом задании параметрам.


БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1) Антенны и устройства СВЧ. Проектирование ФАР: Учеб. пособие для ВУЗов / Под ред. Д.И. Воскресенского – М.: Радио и связь, 1994.

2) Антенны и устройства СВЧ. Проектирование ФАР: Учеб. пособие для ВУЗов / Под ред. Д.И. Воскресенского – М.: Советское радио, 1972.

3) Антенно-фидерные устройства. Драбкин А.Л. и др. – М.: Советское радио,1974.

4) Сазонов Д.М. Антенны и устройства СВЧ: Учеб. для радиотехнич. спец. ВУЗов. – М.: Высш. шк., 1988.

5) Жук М.С., Молочков Ю.Б. Проектирование антенно-фидерных устойств. – М.: Энергия, 1966.