Смекни!
smekni.com

Анализ периодических и непериодических сигналов (стр. 2 из 5)


Сопоставление спектров периодического и непериодического сигналов.

Сопоставление спектров произведем на основании соотношения

Сравнение спектров периодического и непериодического сигналов показывает, что гармоники, построенные на частотах, кратных w1, и ограниченные спектральной плотностью непериодического сигнала со значениями Сn на спектральных диаграммах совпадают.

Определение энергии и средней мощности заданного сигнала на участке цепи с сопротивлением 1 Ом.

Определим энергию сигнала по временному представлению.


Контрольная работа №2

Расчет прохождения периодических и непериодических сигналов через линейные электрические цепи первого порядка

Дано:

Шифр периодического сигнала s1 ─ 4 из табл. 3[1];

Рис. 1

После подстановки значений параметров и масштабирования, получаем:

Рис. 2

Длительность периода ─ Т = 0,001 с = 1000 мкс ;

Соотношение между периодом и длительностью импульса ─ Т = 3τ

Соотношение параметров цепи и сигнала:

Шифр цепи – 2 из табл. 4[1];

Рис. 3

Значения сопротивлений из табл. 1[1] – R1 = 2R; R2 = R

Задание:

Рассчитать и построить в масштабе АЧХ и ФЧХ интегрирующей и дифференцирующей цепей в диапазоне от нуля до 10 кГц, полагая

(по шкале абсцисс сделать градуировку частоты в кГц и в безразмерных величинах wtц);

Рассчитать и построить в масштабе переходную и импульсную характеристики цепей от нуля до tmax = 3tц (по шкале абсцисс сделать градуировку времени в мкс и в безразмерных величинах t/tц);

Проверить выполнение предельных соотношений между частотными и импульсными характеристиками.

Рассчитать спектр амплитуд и фаз на выходе заданной цепи при действии периодического сигнала s1(t).

Построить с учетом масштаба на общей спектрограмме спектры амплитуд и фаз входного и выходного сигналов при действии сигнала s2(t).

Дать представление входного сигнала с помощью функций Хевисайда.

Получить динамическое представление отклика заданной цепи на действие сигнала s2(t)(с помощью переходных характеристик).

Изобразить отклик цепи на интервале времени от нуля до tmax, в три раза превышающем длительность воздействия сигнала s2(t) .

Сделать выводы по результатам проведенного анализа.

Расчет частотных характеристик интегрирующей и дифференцирующей цепей.

Выполнение пунктов 1-3 задания оформляем в виде таблицы.

Табл. 1 – Анализ дифференцирующей и интегрирующей цепей.

Дифференцирующая цепь Интегрирующая цепь
Рис. 4
Рис. 5
Вводим оператор дифференцирования р, такой, что
Передаточный коэффициент цепи:
Передаточный коэффициент цепи:
Находим комплексный передаточный коэффициент, заменяя р на jw

После анализа цепей находим частотные характеристики.

Табл. 2 – Частотные характеристики цепей

Дифференцирующая цепь Интегрирующая цепь
Амплитудно-частотная (АЧХ)
Фазочастотная (ФЧХ)
f,Гц 0 100 700 2000 5000 10000
w,рад/с 0 628,3 4398,2 12566,4 31415,9 62831,9
wtц,рад 0,000 0,043 0,303 0,866 2,165 4,329
К(w) 1 0,96 0,46 0,18 0,07 ~ 0
j(w),рад 0,00 -0,27 -1,09 -1,39 -1,50 ~ -1,57
j(w),град 0 -15,2 -62,3 -79,6 -85,8 ~ -90

Рис. 6. АЧХ ДЦ

Рис. 7. АЧХ ИЦ

Рис. 8. ФЧХ ДЦ

Рис. 9. ФЧХ ИЦ

Расчет временных характеристик дифференцирующей и интегрирующей цепей.

Находим временные характеристики операторным методом, пользуясь значением операторного коэффициента найденного в пункте 1.

Табл. 3 – Временные характеристики цепей

Дифференцирующая цепь Интегрирующая цепь
Импульсные
Переходные
t,мкс 0 200 500 700 1000 1298,7
t/ τц 0 0,462 1,155 1,617 2,31 3
h(t) 2310 1455,35 727,78 458,52 229,29 ~ 0
g(t) 0 0,37 0,68 0,80 0,90 ~ 1

Рис. 10. ИХ ДЦ

Рис. 11 ИХ ИЦ

Рис. 12. ПХ ДЦ

Рис. 13. ПХ ИЦ

Проверка соотношений между частотными и временными характеристиками дифференцирующей и интегрирующей цепей.

Предельные соотношения

Табл. 4 – Предельные соотношения

Дифференцирующая цепь Интегрирующая цепь

Расчет спектра амплитуд и фаз на выходе заданной цепи при действии периодического сигнала s1(t).