Смекни!
smekni.com

Анализ периодических и непериодических сигналов (стр. 4 из 5)

Рис. 17 – Изображение входного непериодического сигнала s2 и отклик цепи на него.

Выводы.

Анализ линейной цепи облегчается, тем, что передаточный коэффициент заданной цепи можно представить в виде линейной комбинации передаточных коэффициентов интегрирующей и дифференцирующей цепей.

В этом случае можно достаточно просто находить отклик цепи на сигнал, представляя его как линейную комбинацию откликов элементарных цепей.

При прохождении сигнала через линейную цепь нули и точки экстремума его амплитудного и фазного спектров не меняются. Меняется лишь само значение экстремумов амплитудного спектра.

Представление прямоугольно импульсных сигналов с помощью функции Хевисайда позволяет достаточно просто рассчитать отклик цепи, как линейную комбинацию откликов на единичную функцию включения.

Операторный метод и теория обобщенных функций дает достаточно мощный аппарат для исследования цепей и сигналов.


Контрольная работа №3

Расчет прохождения непериодического сигнала сложной формы через линейную цепь второго порядка

Дано:

Шифр входного сигнала s(t) ─ N1= 4; N2= 3 из табл. 2[1];

N2= 3 – Соотношение параметров импульса : t2 = 1,5t1 из табл. 5[1];

N1= 4 – Номер рисунка из табл. 5[1] – 4;

Рис. 1

Шифр цепи – N3 N4= 44 из табл. 3[1];

Номер рисунка из табл. 6[1] N3 N4= 44;

Рис. 2

Соотношение параметров цепи и сигнала:

Задание:

Рассчитать и построить в масштабе АЧХ и ФЧХ цепи

Рассчитать и построить в масштабе переходную и импульсную характеристики цепи;

Проверить выполнение предельных соотношений между частотными и импульсными характеристиками.

Дать поинтервальное аналитическое представление сигнала по его графику;

Рассчитать операторным методом или методом временного интегрирования отклик на выходе линейной цепи и дать его поинтервальное описание

По результатам вычислений изобразить отклик на выходе линейной цепи на отрезке времени от нуля до tmax, в три раза превышающем длительность воздействия сигнала. Сигнал воздействия и отклика совместить на одном рисунке.

Сделать выводы ( оценка операторного и временного методов применительно к решаемой задаче, физическая интерпретация полученных результатов).

Расчет частотных характеристик линейной цепи второго порядка

Для того, чтобы найти операторную передаточную функцию, преобразуем схему

Рис. 3


Согласно известной из теоретической электротехники формуле переходим от треугольника к эквивалентной звезде:

Рис. 4

На холостом ходу:

Рис. 5

Находим операторный передаточный коэффициент:

Находим корни знаменателя К(р)

Получаем

Получаем комплексный передаточный коэффициент заменяя р на jw

АЧХ цепи:

ФЧХ цепи:

Табл. 1 – Расчет АЧХ и ФЧХ цепи

f,кГц 0 0,80 1,59 2,25 3,18 4,77 7,96 15,92 31,83 ¥
w,рад/с 0 5000 10000 14142,14 20000 30000 50000 100000 200000 ¥
wtц,рад 0 0,5 1
2 3 5 10 20 ¥
К(w) 0 0,22 0,32 0,33 0,32 0,26 0,18 0,10 0,05 0
j(w) 900 49,400 18,430 0,000 -18,430 -37,870 -56,890 -72,980 -81,430 -900

Рис. 6 – АЧХ цепи второго порядка

Рис. 7 – ФЧХ цепи второго порядка

Расчет временных характеристик линейной цепи второго порядка

Временные характеристики находим по обратному преобразованию Лапласа, используя операторный передаточный коэффициент. Операторный коэффициент является суммой коэффициентов интегрирующих звеньев вида

Импульсная характеристика интегрирующей цепи (см. к.р.№2)

Переходная характеристика интегрирующей цепи (см. к.р.№2)

Импульсная характеристика заданной цепи:

Переходная характеристика заданной цепи:

Табл. 2 – Расчет временных характеристик

t,мкс 0 10 20 50 60 69,315 80 100 300 500 1000
t/ τц 0 0,1 0,2 0,5 0,6 0,69315 0,8 1 3 5 10
h(t) 10000 7326,2 5219,1 1292,3 535,8 0,0 -455,4 -972,1 -448,3 -66,5 -0,5
g(t) 0,000 0,086 0,148 0,239 0,248 0,250 0,247 0,233 0,047 0,007 0,000

Рис. 8 – Импульсная характеристика цепи


Рис. 9 – Переходная характеристика цепи

Предельные соотношения между частотными и временными характеристиками.

Поинтервальное описание входного сигнала

Обозначим длительность сигнала – Т.

Тогда

Рис. 10 – Входной сигнал

На интервале t=[0; 0,4T]

На интервале t=[0,4T; 0,6T]

На интервале t=[0,6T; T]

Используя функцию включения можно записать представление входного сигнала в виде:

Расчет отклика на выходе цепи

Рассчитываем отклик на выходе методом временного интегрирования, используя интеграл Дюамеля:

На интервале t=[0; 0,4T]

На интервале t=[0,4T; 0,6T]

На интервале t=[0,6T; T]

На интервале

t=[T; ¥]

, где:

Найдем отклик операторным методом. Входной сигнал равен:

.

Пользуясь преобразованием Лапласа

,