Физико-химические свойства почвы оцениваются по показателю кислотности: актуальной (водная вытяжка), обменной (вытяжка раствором нейтральной соли KСl), и гидролитической (вытяжка раствором гидролитически щелочной соли CH3COONa). Актуальная кислотность обусловлена повышенной концентрацией в почвенном растворе ионов Н+ по сравнению с ОН - и выражена значением отрицательного логарифма концентрации водородного иона рН, который непосредственно обеспечивает ту или иную степень кислотности почвы. Для черноземов выщелоченных опытного поля характерна слабокислая реакция в пахотном горизонте. На этом уровне она сохраняется до горизонта ВС и С. Гумуса в пахотном слое содержится 7,63%, а запас составляет 210 т/га. По принятой градации это высокий показатель гумусового состояния.
Определение содержания и запаса азота подтверждает известную связь между количеством в почве этого элемента и гумуса. Как показывает таблица2, со снижением содержания гумуса вниз по профилю почвы следует соответственно снижение содержания азота. В пахотном слое азота содержится 0,264% или 7,84 т/га. Однако, только 3,1-4,3% этого количества приходится на легкогидролизуемую фракцию, которая наиболее доступна почвенным микроорганизмам и является ближайшим резервом для трансформации в минеральную, усваиваемую растениями форму.
Слабокислая среда черноземов выщелоченных создает условия для повышения подвижности фосфатов. Концентрация фосфора в пахотном слое составляет 0,135% в подпахотном - 0,089% или 3,72 и 1,56 т/га. В то же время содержание его подвижных фракций как правило низкое.
По отношению к валовому фосфору подвижные фракции составляют менее 0,5%. Черноземы выщелоченные имеют среднюю и повышенную обеспеченность калием, если судить по содержанию его обменной фракции. В пахотном слое его содержится 7,22% или 61,7 т/га, в подпахотном - 2,23% или 39 т/га. В поглощающем комплексе на долю обменного калия приходится 0,55-0,90%.
Агрохимическая характеристика чернозема выщелоченного опытного поля Института агроэкологии представлена в таблице 2.
Для разработки, совершенствования и сравнения по эффективности различных способов химической мелиорации чернозема выщелоченного, загрязненного медью, на опытном поле Института агроэкологии в 1999 году заложен мелкоделяночный стационарный опыт в экспериментальном севообороте пар - яровая пшеница - ячмень - овес. Площадь делянки 2м2, размещение рендомизированное в четырех кратной повторности (табл.3).
Таблица 3 - Чередование культур в экспериментальном севообороте за период одной ротации
Год | Чередование культур на полях севооборота | |||
1 | 2 | 3 | 4 | |
2000 | пар | яр. пшеница | ямень | овес |
2001 | яр. пшеница | ячмень | овес | пар |
2002 | ячмень | овес | пар | яр. пшеница |
2003 | овес | пар | яр. пшенца | ямень |
2004 | пар | яр. пшенца | ямень | овес |
Загрязнение чернозема выщелоченного медью проводили, используя соль серной кислоты - сульфат меди. Доза внесения CuSO4∙5H2O составила 30,4г на делянку (2м2). Соль вносили в растворенном виде равномерно на всю площадь делянки, рыхлили с помощью штыковой лопаты и затем содержали по типу чистого пара. Все операции по механическому воздействию на почву чистых и загрязненных фонов были идентичны.
После парования внесли вразброс мелиоранты: глауконит - 10 т/га, из расчета на чистый минерал; известь - 5 т/га, в соответствии с рекомендациями по известкованию кислых почв и в расчете на рН 7,0; фосфоритную муку - 5 т/га, согласно выводам Н.А. Черных с сотрудниками (1999). Каждый из используемых химических мелиорантов обладает различным действием.
Известь - снижает подвижность металла за счет взаимодействия его с карбонатами почвенного раствора при рН близкой к нейтральной среде.
Фосфоритная мука - обеспечивает взаимодействие металла с фосфат-ионами до нерастворимых соединений.
Глауконит - природный сорбент, обладающий высокой емкостью поглощения по отношению к меди.
Перед посевом сельскохозяйственных культур почву рыхлили (вручную). Высевали яровую пшеницу сорта Казахстанская раннеспелая, ячмень Медикум 85, овес сорта Скакун. Для каждой культуры было подготовлено 8 вариантов опыта, на которых изучалось действие мелиорантов на урожайность культур и показатели плодородия почв.
Вариант 1. Почва в исходном состоянии
Вариант 2. Почва + Zn (контроль для цинка)
Вариант 3. Почва + Zn + глауконит, 10 т/га;
Вариант 4. Почва + Zn + известь, 5 т/га;
Вариант 5. Почва + Zn + фосфоритная мука, 5 т/га;
Вариант 6. Почва + Cu (контроль для меди)
Вариант 7. Почва + Сu + глауконит, 10 т/га;
Вариант 8. Почва + Сu + известь, 5 т/га;
Вариант 9. Почва + Сu + фосфоритная мука, 5 т/га.
Схема приведена на рисунке 1.
Схема полевого опыта *
мелиоранта
Zn незагр. Cu Zn незагр. Cu Zn незагр. Cu Zn незагр. Cu
почва почва почва почва
1 м
глауконитфосфорит.
мука
пар яровая ячмень овёс
пшеница
Рисунок 1. Схема полевого опыта.
* Схема первого повторения полевого опыта. Дальнейшее размещение вариантов рендомизированно.
Перед закладкой опыта весной 1999 года провели общую агрохимическую характеристику опытного участка, в том числе и на содержание меди. Для этого:
отобрали смешанные образцы с каждого поля и каждой повторности из слоев 0-10; 10-20; 20-40 см.
в почвенных образцах определяли валовое содержание гумуса, подвижные формы азота, фосфора и калия, состав поглощенных оснований, рН, подвижные формы меди.
Наблюдения и учеты.
1. Отбор почвенных образцов перед посевом сельскохозяйственных культур по горизонтали в слоях 0-10; 10-20; 20-40 см по вариантам опыта.
2. Отбор растительных образцов.
3. Определение содержания меди в основной и побочной продукции.
4. Отбор почвенных образцов после уборки сельскохозяйственных культур в горизонтах 0-10; 10-20; 20-40 см по вариантам опыта.
5. Определение подвижных форм меди в почвенных образцах.
Содержание меди в почвенных и растительных образцах определялось на атомно-адсорбционном спектрофотометре.
В опыте использовали глауконит Усть-Багарякского месторождения (Челябинская область) следующего химического состава: Si2 - 52,89; Al2O3 - 11,83; Fe2O3 - 16,74; MnO- 0,03; MgO- 4,31; СaO- 0,82; K2O- 8,57 и Na2O- 0,14%. Удельный вес глауконита колеблется от 2,3 до 2,9 г/см3. Цвет от светло-, темно-зеленого или почти черного. Используемый в опыте глауконит имел зеленовато-серый цвет. Емкость катионного обмена природных глауконитов колеблется в пределах 250-350 мг-экв. на кг минерала. Используемый в опыте концентрат глауконита имел емкость обмена 450-470 мг-экв. /кг. Как показали лабораторные исследования, опытный образец минерала обладал высокой адсорбционной способностью относительно меди - 781,2 ± 7,5 мг/кг навески. Степень извлечения из кислых растворов 90%, из основных - 84%.