Смекни!
smekni.com

Изучение эффективности различных приемов химической мелиорации чернозема выщелоченного, загрязненного медью (стр. 5 из 9)

Физико-химические свойства почвы оцениваются по показателю кислотности: актуальной (водная вытяжка), обменной (вытяжка раствором нейтральной соли KСl), и гидролитической (вытяжка раствором гидролитически щелочной соли CH3COONa). Актуальная кислотность обусловлена повышенной концентрацией в почвенном растворе ионов Н+ по сравнению с ОН - и выражена значением отрицательного логарифма концентрации водородного иона рН, который непосредственно обеспечивает ту или иную степень кислотности почвы. Для черноземов выщелоченных опытного поля характерна слабокислая реакция в пахотном горизонте. На этом уровне она сохраняется до горизонта ВС и С. Гумуса в пахотном слое содержится 7,63%, а запас составляет 210 т/га. По принятой градации это высокий показатель гумусового состояния.

Определение содержания и запаса азота подтверждает известную связь между количеством в почве этого элемента и гумуса. Как показывает таблица2, со снижением содержания гумуса вниз по профилю почвы следует соответственно снижение содержания азота. В пахотном слое азота содержится 0,264% или 7,84 т/га. Однако, только 3,1-4,3% этого количества приходится на легкогидролизуемую фракцию, которая наиболее доступна почвенным микроорганизмам и является ближайшим резервом для трансформации в минеральную, усваиваемую растениями форму.

Слабокислая среда черноземов выщелоченных создает условия для повышения подвижности фосфатов. Концентрация фосфора в пахотном слое составляет 0,135% в подпахотном - 0,089% или 3,72 и 1,56 т/га. В то же время содержание его подвижных фракций как правило низкое.

По отношению к валовому фосфору подвижные фракции составляют менее 0,5%. Черноземы выщелоченные имеют среднюю и повышенную обеспеченность калием, если судить по содержанию его обменной фракции. В пахотном слое его содержится 7,22% или 61,7 т/га, в подпахотном - 2,23% или 39 т/га. В поглощающем комплексе на долю обменного калия приходится 0,55-0,90%.

Агрохимическая характеристика чернозема выщелоченного опытного поля Института агроэкологии представлена в таблице 2.

3. Экспериментальная часть

3.1 Методика закладки и проведения полевого стационарного опыта

Для разработки, совершенствования и сравнения по эффективности различных способов химической мелиорации чернозема выщелоченного, загрязненного медью, на опытном поле Института агроэкологии в 1999 году заложен мелкоделяночный стационарный опыт в экспериментальном севообороте пар - яровая пшеница - ячмень - овес. Площадь делянки 2м2, размещение рендомизированное в четырех кратной повторности (табл.3).

Таблица 3 - Чередование культур в экспериментальном севообороте за период одной ротации

Год Чередование культур на полях севооборота
1 2 3 4
2000 пар яр. пшеница ямень овес
2001 яр. пшеница ячмень овес пар
2002 ячмень овес пар яр. пшеница
2003 овес пар яр. пшенца ямень
2004 пар яр. пшенца ямень овес

Загрязнение чернозема выщелоченного медью проводили, используя соль серной кислоты - сульфат меди. Доза внесения CuSO4∙5H2O составила 30,4г на делянку (2м2). Соль вносили в растворенном виде равномерно на всю площадь делянки, рыхлили с помощью штыковой лопаты и затем содержали по типу чистого пара. Все операции по механическому воздействию на почву чистых и загрязненных фонов были идентичны.

После парования внесли вразброс мелиоранты: глауконит - 10 т/га, из расчета на чистый минерал; известь - 5 т/га, в соответствии с рекомендациями по известкованию кислых почв и в расчете на рН 7,0; фосфоритную муку - 5 т/га, согласно выводам Н.А. Черных с сотрудниками (1999). Каждый из используемых химических мелиорантов обладает различным действием.

Известь - снижает подвижность металла за счет взаимодействия его с карбонатами почвенного раствора при рН близкой к нейтральной среде.

Фосфоритная мука - обеспечивает взаимодействие металла с фосфат-ионами до нерастворимых соединений.

Глауконит - природный сорбент, обладающий высокой емкостью поглощения по отношению к меди.

Перед посевом сельскохозяйственных культур почву рыхлили (вручную). Высевали яровую пшеницу сорта Казахстанская раннеспелая, ячмень Медикум 85, овес сорта Скакун. Для каждой культуры было подготовлено 8 вариантов опыта, на которых изучалось действие мелиорантов на урожайность культур и показатели плодородия почв.

Вариант 1. Почва в исходном состоянии

Вариант 2. Почва + Zn (контроль для цинка)

Вариант 3. Почва + Zn + глауконит, 10 т/га;

Вариант 4. Почва + Zn + известь, 5 т/га;

Вариант 5. Почва + Zn + фосфоритная мука, 5 т/га;

Вариант 6. Почва + Cu (контроль для меди)

Вариант 7. Почва + Сu + глауконит, 10 т/га;

Вариант 8. Почва + Сu + известь, 5 т/га;

Вариант 9. Почва + Сu + фосфоритная мука, 5 т/га.

Схема приведена на рисунке 1.

Схема полевого опыта *



оросительный канал

без

мелиоранта

Zn незагр. Cu Zn незагр. Cu Zn незагр. Cu Zn незагр. Cu

почва почва почва почва


1 м

глауконит


известь

фосфорит.

мука

пар яровая ячмень овёс

пшеница

Рисунок 1. Схема полевого опыта.

* Схема первого повторения полевого опыта. Дальнейшее размещение вариантов рендомизированно.

Перед закладкой опыта весной 1999 года провели общую агрохимическую характеристику опытного участка, в том числе и на содержание меди. Для этого:

отобрали смешанные образцы с каждого поля и каждой повторности из слоев 0-10; 10-20; 20-40 см.

в почвенных образцах определяли валовое содержание гумуса, подвижные формы азота, фосфора и калия, состав поглощенных оснований, рН, подвижные формы меди.

Наблюдения и учеты.

1. Отбор почвенных образцов перед посевом сельскохозяйственных культур по горизонтали в слоях 0-10; 10-20; 20-40 см по вариантам опыта.

2. Отбор растительных образцов.

3. Определение содержания меди в основной и побочной продукции.

4. Отбор почвенных образцов после уборки сельскохозяйственных культур в горизонтах 0-10; 10-20; 20-40 см по вариантам опыта.

5. Определение подвижных форм меди в почвенных образцах.

Содержание меди в почвенных и растительных образцах определялось на атомно-адсорбционном спектрофотометре.

3.2 Характеристика мелиорантов

В опыте использовали глауконит Усть-Багарякского месторождения (Челябинская область) следующего химического состава: Si2 - 52,89; Al2O3 - 11,83; Fe2O3 - 16,74; MnO- 0,03; MgO- 4,31; СaO- 0,82; K2O- 8,57 и Na2O- 0,14%. Удельный вес глауконита колеблется от 2,3 до 2,9 г/см3. Цвет от светло-, темно-зеленого или почти черного. Используемый в опыте глауконит имел зеленовато-серый цвет. Емкость катионного обмена природных глауконитов колеблется в пределах 250-350 мг-экв. на кг минерала. Используемый в опыте концентрат глауконита имел емкость обмена 450-470 мг-экв. /кг. Как показали лабораторные исследования, опытный образец минерала обладал высокой адсорбционной способностью относительно меди - 781,2 ± 7,5 мг/кг навески. Степень извлечения из кислых растворов 90%, из основных - 84%.