Глауконит, используемый в опыте, характеризуется малым содержанием тяжелых металлов: Cu-5,4; Zn- 38,1; Pb-1,6; Cd- 0,78; Cr- 69,2 и Ag- 13,6 мг на кг, реакция солевой вытяжки - pH 4,8, валовое содержание азота (N) 0,13%, фосфора (P2O5) - 0,09% и калия (К2О) - 1,575.
Для проведения известкования также использовали местный материал - известь, производимую в АО "Мечел" из известняков Сибайского и Тургоякского месторождений. Мелиорант имеет влажность менее 2%, содержит только следы вредных примесей и 97,1% CaCO3. Эффективность данного мелиоранта повышается с уменьшением размера его частиц. Известь является основным материалом, используемым на всех кислых почвах под различные сельскохозяйственные культуры.
Фосфоритная мука представляет собой размолотые природные фосфаты или продукты их обогащения без какой-либо химической переработки. Это порошок серого цвета разных оттенков. Фосфор в фосфоритной муке представлен неусвояемым растениями трехкальциевым фосфатом Ca (PO4) 2.
Растения могут использовать фосфоритную муку только при внесении ее в кислую почву, где под влиянием почвенной кислотности фосфор постепенно переходит в растворимую и доступную для растений форму СаНРО4*2Н2О. Поэтому, чем меньше частицы фосфоритной муки и выше их удельная поверхность и площадь соприкосновения с почвой, тем интенсивнее будут проходить процессы перевода ее в доступное для растений состояние.
Вследствие медленного разложения фосфоритной муки в почве действие ее продолжается несколько лет. Данный мелиорант можно использовать в качестве основного удобрения на кислых почвах в двойной дозе по сравнению с суперфосфатом. Не рекомендуется применять на известкованных почвах и совместно с известью. Недостаток фосфоритной муки - ее пылящие свойства, что значительно затрудняет ее применение.
Первое и важное требование к земельному участку и полевому опыту - типичность или репрезентативность. Земельный участок для будущего опыта должен соответствовать тем условиям, в которых предполагается применить результаты опыта: свойствам, плодородию и рельефу почв, расположенных в данном районе, или даже в других районах, близких по природным условиям.
Второе требование к почвенному участку - однородность его почвенного покрова. Для данных исследований наиболее важным является однородное фоновое (природное) содержание меди, что должно обеспечить достаточную точность опытов.
Почва экспериментального участка, где был заложен севооборот, является однородной на всех полях, что соответствует вышеизложенным требованиям.
Химический анализ полей севооборота по основным характеристикам почвы отражен в таблице 4.
Таблица 4 - Общая характеристика почвы полевого опыта
Слойпочвы, см | Показатели | ||||
рНсол | Гумус,% | Р2О5, мг/100г | К2О, мг/100 г | Сu, мг/кг | |
0-10 | 5,96 | 7,63 | 13,94 | 18,15 | 0,44 |
10-20 | 5,93 | 7,18 | 14,29 | 18,11 | 0,44 |
20-40 | 6,01 | 7,00 | 10,26 | 13,36 | 0,58 |
Рассматривая результаты химического анализа по горизонтам, можно отметить, что фоновое содержание меди находится в существенно ниже ПДК (3 мг/кг) незначительно увеличивается с глубиной. Содержание гумуса высокое. Солевая вытяжка почвы соответствует слабокислой реакции. Содержание Р2О5 (по Чирикову) повышенное, а К2О (по Чирикову) высокое.
Данная агрохимическая характеристика почвы показывает состояние экспериментального участка на момент закладки полевого эксперимента.
Внесение в почву сульфата меди привело к резкому увеличению содержания подвижных ее форм во всех вариантах опыта. По сравнению с контрольным вариантом, где содержание подвижных форм меди в горизонте 0-20 составило 0,44 мг/кг почвы, а в горизонте 20-40 - 0,58 мг/кг, во втором варианте содержание подвижных форм данного металла увеличилось по слоям в 219 и в 106 раз соответственно. Эти показатели превышают ПДК меди в почве (3 мг/кг) в слое 0-20 в 32 раза и в слое 20-40 в 20 раз.
По сравнению с исходным содержанием меди в почве (вариант 1) после загрязнения ее CuSO4·5H2O произошло увеличение содержания подвижных форм данного металла в среднем на 78,7%. После использования на загрязненных почвах трех сравниваемых мелиорантов, на основании данных таблицы 5 можно сказать, что наиболее активно связывал подвижные формы меди природный адсорбент - глауконит. Внесение 10 т/га обогащенного глауконита (без глины и примесей) уменьшило содержание подвижных форм меди на 24,2%. В свою очередь, внесение 5 т/га извести позволило снизить содержание загрязнителя на 8,8%, а при использовании фосфоритной муки (5 т/га) такого же эффекта удалось добиться всего на 7,6%.
И все-таки не один из применяемых мелиорантов при таком высоком уровне загрязнения почвы медью не смог обеспечить значительного уменьшения подвижности металла. Из таблицы 5 видно, что содержание подвижных форм меди во всех вариантах превосходит ПДК. Таким образом, применение даже таких активных химических мелиорантов, как глауконит, известь, фосфоритная мука не может обеспечить полную химическую детоксикацию тяжелых металлов. Поэтому необходимо исключать выброс тяжелых металлов в окружающую среду, по средствам создания замкнутых циклов производства.
Таблица 5 - Влияние мелиорантов на содержание в почве подвижных форм меди, мг/кг (среднее за три года)
Вариант | Состав | Содержание в слое | Изменения относительно | ||||
0-20 | 20-40 | 0-40 | 1 вар-та | 2 варианта | |||
мг/кг | мг/кг | % | |||||
1. | Почва | 0,44 | 0,58 | 0,51 | - | -78,69 | - |
2. | Почва + Сu | 96,63 | 61,78 | 79, 20 | +78,69 | - | 100 |
3. | Почва + Сu + глауконит,10 т/га | 76,60 | 43,38 | 60,00 | +59,49 | -19,2 | 75,8 |
4. | Почва + Сu + известь, 5 т/га | 83,70 | 58,2 | 72, 20 | +71,69 | -7,0 | 91,2 |
5. | Почва + Сu + фосфоритная мука, 5 т/га | 87,28 | 59,15 | 73, 20 | +72,69 | -6,0 | 92,4 |
Как отмечалось в методике в подразделе 3.1 экспериментальный севооборот представлен четырьмя полями, где чередуются зерновые культуры с применением парового агрофона. Чтобы предотвратить превнос в почву дополнительного количества тяжелых металлов, минеральные удобрения на стационаре не применялись, поскольку в их состав металлы входят как загрязнители. Кроме того, минеральные туки - это активные соли, которые могут взаимодействовать с химической составляющей применяемых мелиорантов, тем самым, снижая их мелиорирующее действие.
За годы исследования урожайность тест-культур в контрольном варианте в среднем составила у яровой пшеницы - 1,87 т/га, у ячменя - 1,94 т/га и у овса - 2,26 т/га (табл.6,7). В варианте, где почва подверглась загрязнению медью наблюдалось достаточно резкое снижение урожайности зерна и соломы культур севооборота: на яровой пшенице в 2001 году на 32%, а в 2002 на 33%. Урожайность ячменя при возделывании его на загрязненной медью почве в 2001 году составила 1,51 т/га, что на 26% ниже по сравнению с контрольным вариантом, а в 2002 году снизилась на 29%. То же самое наблюдалось и на овсе, урожайность которого в 2001 году снизилась на 25%, а в 2002 году на 31%.
Действие мелиорантов на урожайность зерна и соломы возделываемых культур проявлялось во всех вариантах опыта, но было неоднозначно. На полях, занятых яровой пшеницей в 2001 году действие мелиорантов проявилось в меньшей степени, хотя рост урожайности зерна и соломы наблюдался в сравнении с вариантом, где мелиоранты не применялись и был доказуем математически.
В 2001 году наибольшие прибавки давало применение глауконита при возделывании ячменя - 0,61 ц/га зерна, при этом различия в прибавках урожая на разных вариантах отчетливо видны и математически достоверны. При применении извести и фосфоритной муки прибавки зерна и соломы ячменя меньше и составляют около 0,4 и 0,6 ц/га соответственно.
Достоверно повышение урожайности при выращивании овса на почвах, мелиорируемых глауконитом. Хотя прибавки здесь в 2001 году небольшие - 0,34 т/га зерна и 0,53 т/га соломы. Действие извести и фосфоритной муки примерно одинаково, разница урожайностей на этих вариантах находится в пределах ошибки опыта.
По эффективности действия на урожайность зерна и соломы яровой пшеницы в 2002 году выделяется глауконит, при его использовании урожайность зерна составляет 1,82 ц/га, соломы - 2,58 ц/га. Хотя влияние данного мелиоранта в сравнении с применением извести находится в пределах ошибки опыта, значение НСР05 составляет 0,08. Урожайность зерна яровой пшеницы в III варианте составляет 1,74 т/га. Действие фосфоритной муки значительно ниже, чем при использовании 10 т/га глауконита. Это подтверждается значениями НСР05.
При возделывании в 2002 году ячменя и овса на почвах, загрязненных медью, лучшее мелиорирующее действие обеспечивает глауконит, что подтверждается наибольшими прибавками урожая: для ячменя - 1,70 т/га, для овса - 2,12 т/га. Следует отметить, что для этих культур можно определить различия в эффективности действия мелиорантов на основе данных величины НСР05. На урожайность зерна и соломы ячменя лучше действует применение фосфоритной муки, чем извести, давая прибавку зерна на 0,13 т/га, а соломы на 0,19 т/га больше.