Смекни!
smekni.com

Контроллеры для автоматизации крупных промышленных объектов (стр. 4 из 4)

В качестве внутренней шины контроллера была выбрана шина CAN-bus. С нашей точки зрения для внутренних коммуникаций контроллера она подходит наилучшим образом [5].

Сеть CAN-bus является одним из наиболее зрелых стандартов. Он реализован в виде специализированных СБИС более чем 20 ведущими компаниями, поддерживает разнообразные среды передачи, контролирует целостность и отсутствие ошибок при передаче/приеме сообщения без получения специального ответа от "получателя". Жесткая детерминированность протокола, динамическое распределение приоритетов, многомастерность, поддержка совместной обработки управляемой событиями, смысловая адресация сообщений и событий вместо традиционной физической адресации получателя/отправителя сетевых пакетов, все это делает его подходящим средством межмодульной коммуникации в контроллере [5].

Итак, взаимодействие MIF-модулей внутри MIF-контроллера осуществляется по дублированной шине CAN-bus. Конструктивно сеть CAN-bus выполнена в MIF-контроллере на объединительной печатной плате, в которую устанавливаются MIF-модули. Дублирование шины повышает надежность MIF-контроллера до уровня, который никогда не достижим в традиционных контроллерах - MIF-контроллер не может отказать ни при каком любом единичном отказе среды передачи контроллера.

Решения по организации ввода/вывода

Контроллеры в ПТК для автоматизации технологических процессов должны решать вполне определенный набор задач по вводу, т.е. преобразованию физических сигналов в цифровой код, и выводу, т.е. обратному преобразованию из цифрового кода в физический сигнал. В этот набор входят задачи ввода сигналов от термопар, термометров сопротивлений, потенциальных и токовых аналоговых сигналов и дискретных сигналов в диапазоне от 24В до 220В, а так же задачи вывода потенциальных и токовых аналоговых команд и дискретных команд в том же диапазоне. Кроме того, в ряде случаев могут возникать более нестандартные задачи ввода/вывода. Для решения этих разнообразных задач требуется набор соответствующих модулей для ввода/вывода.

При разработке MIF-контроллера, как одна из основных, ставилась задача минимизации расходов на разработку, минимизации стоимости контроллера, унификации принятых технических решений и проектной компонуемости не только контроллера, но и входящих в него модулей.

Для удовлетворения всех перечисленных требований была выбрана "мезонинная" технология организации ввода/вывода, которая основана на выделении целевых функций ввода/вывода в отдельные субмодули (мезонины), устанавливаемые на модуль-носитель.

Нами была выбрана "мезонинная" технология ModPack, разработанная в 80-х годах компанией PEP Modular Computers [7]. Эта технология получила широкое распространение в мире и является сегодня открытым международным стандартом. Сегодня в мире выпускается различными независимыми производителями около ста типов субмодулей в стандарте ModPack. Это означает, что на рынке средств автоматизации можно найти функциональный субмодуль для решения практически любой задачи.

Отличительной особенностью субмодулей ModPack от других мезонинных технологий является крайне простой системный интерфейс. В отличие от многих других мезонинных модулей, он разрабатывался специально для задач сопряжения с объектом автоматизации. В нем детально продуманы вопросы электросовместимости и электробезопасности. Использование "мезонинной" технологии сузило нашу задачу до разработки одного единственного модуля-носителя для субмодулей ModPack, удовлетворяющего всем общесистемным требованиям, упомянутым в этой статье.

Сопряжение с "полевым" уровнем

Основная часть функций сопряжения ПТК с "полевым" уровнем (датчики, преобразователи, исполнительные механизмы и пр.) решена в субмодулях ModPack. В них реализуются функции аналого-цифрового преобразования, фильтрации, цифро-аналогового преобразования и т.п.

Остальная часть задач сопряжения, таких как подключение "полевых" кабельных связей сечением до 2,5 мм2, согласование с конкретными измерительными схемами (2, 3, 4-х проводные, переход из термокомпенсационного кабеля в медный, и т.д.), дополнительные преобразования (24В в 220В и наоборот) и т.п., решается в Блоках Полевых Интерфейсов (БПИ).

БПИ могут устанавливаться в шкафу как отдельно, так и вместе с крейтом контроллера. БПИ монтируются на стандартную DIN-рейку. В верхней части БПИ размещаются клеммы для подключения "полевых" кабелей, а в нижней - разъем для подключения плоского 24 жильного кабеля к MIF-модулям с установленными на них субмодулями ModPack.

Рис. 2. Типовой пример компоновки шкафа КФУ

Большим достоинством применения БПИ является отсутствие дополнительных шкафов пром-клеммников для подключения "полевых" кабелей, простота монтажа оборудования внутри шкафа, высокая модульность и легкость модификаций.

Выбор элементной базы MIF-модуля

При выборе элементной базы для MIF-модуля мы руководствовались следующим:

1. микропроцессор должен поддерживать широко распространенные операционные системы реального времени;

2. иметь встроенные средства для предотвращения зацикливания программ (watch-dog), развитая системная диагностика;

3. развитые средства отладки и тестирования;

4. поддержка инструментальных средств разработки;

5. наличие интерфейса Ethernet;

6. достаточно высокая производительность - не менее нескольких MIPs;

7. оптимальное соотношение стоимость/функциональность.

При выборе микропроцессора, ввиду незначительной разницы в стоимости между 32-х разрядными и 8-ми разрядными микроконтроллерами в сравнение со стоимостью модуля, мы сразу исключили из рассмотрения 8-ми и 16-ти разрядные микроконтроллеры.

Безусловным лидером на рынке 32-х разрядных микроконтроллеров для встраиваемых систем, сегодня является компания Motorola с ее известными микроконтроллерами серий MC68300 на базе ядра CPU32, совместимого с 68000, и новыми микроконтроллерами MPC500, 800, 600 и другие на базе нового RISC-ядра PowerPC.

Мы остановили свой выбор на микроконтроллере MC68EN360 по следующим причинам:

1. наличие полного спектра хорошо отлаженного проверенного системного ПО реального времени и инструментальных средств разработки для микропроцессоров совместимых с 68000;

2. наличие в контроллере всех вспомогательных устройств, необходимых для встраиваемых систем (сторожевые таймеры, низкое потребления, диагностика шинных циклов и выполнения инструкций, и т.д)

3. развитые средства отладки, не доступные в других микроконтроллерах - встроенный в микроконтроллер аппаратный отладчик BDM;

4. встроенный специализированный коммуникационный со-процессор QUIC с поддержкой ряда стандартных сетевых протоколов, включая Ethernet;

5. высокая производительность до 10 MIPS;

6. невысокая стоимость.

Рис. 3. Вид спереди крейта MIF-контроллера

Рис. 4. Логическая структура MIF-контроллера

Краткое описание MIF-контроллера

MIF-контроллер состоит из двух основных подсистем - кластера MIF-модулей и сетевых шлюзов (одного или двух, в зависимости от требований по дублированию "цеховой" сети). MIF-модули объединяется в кластер внутри MIF-контроллера детерминированной локальной сетью CAN-bus. MIF-контроллер может состоять из двух крейтов, содержащих до 32 MIF-модулей. Для обеспечения взаимодействия MIF-модулей с другими контроллерами, MIF-контроллер имеет один или два сетевых шлюза в "цеховую" сеть, реализуемую на Profibus или Ethernet.

Сетевой шлюз является абсолютно прозрачным устройством для MIF-модулей. Каждый MIF-модуль посылает в CAN сеть сообщения не заботясь и не зная о том, где находится адресат - в этом или другом MIF-контроллере. Для него все выглядит так, как будто все MIF-модули находятся в одной огромной сети CAN.

Основная часть сообщений не выходит за пределы MIF-контроллера, что дает фактически пропорциональный числу установленных в системе MIF-контроллеров рост производительности коммуникационной среды.

На рис 3 и 4 показана структура КФУ на примере однокрейтового MIF-контроллера с "цеховой" сетью Profibus.

Заключение

Сформулированы требования к системам управления крупными технологическими объектами учитывающие технологическую структуру объекта, особенности правил его эксплуатации и ввода в действие.

В качестве основного решения, позволяющего наиболее полно удовлетворить сформулированным требованиям в части контроллерного оборудования систем управления, было предложено использовать стандартную последовательную детерминированную сеть в качестве среды межмодульной коммуникации контроллера. Разработанные технические средства на базе MIF-модулей удовлетворяют сформулированным требованиям, а опыт их использования на реальных объектах подтверждает состоятельность принятых в разработке технических решений.

Литература

1. Информационная технология: Рекомендации Р50-34.119-90. Архитектура локальных вычислительных сетей в системах промышленной автоматизации. М.: Госстандарт, 1991.

2. ЗАО "МСТ", Материалы Технического Проекта АСУ ТП 6-го энергоблока 200 МВт Новосибирской ТЭЦ-5, 1998.

3. Информационная технология: Руководящие документы РД 34.35.127-93. Общие технические требования к программно-техническим комплексам для АСУ ТП тепловых электростанций. РАО ЕЭС России, Департамент науки и техники, 1995.

4. Ray S.Alderman, VITA. Future vision // Open Bus Systems'93. P. 15

5. Robert Bosch GmbH, CAN specification Ver 2.0, 1995

6. С.А. Третьяков, CAN на пороге нового столетия // Мир компьютерной автоматизации, №2'99

7. VITA, CXC-MPI draft specification rev.3.10 // VITA 14-199x, September 1997