Смекни!
smekni.com

Расчет характеристик системы передачи дискретных сообщений (стр. 1 из 2)

Тема: Расчет характеристик системы передачи дискретных сообщений

Исходные данные:

Структурная схема системы передачи дискретных сообщений:

ИС – источник сообщения; Д – дискретизатор; К – кодер; ЛС – линия связи; ДМ – демодулятор; ДК – декодер; Ф – фильтр-восстановитель.

Исходные данные

amin amax Fc, Гц j Вид. мод N0, В2/Гц
0 25,6 106 198 ФМ 10-8

Способ приема - когерентный.

Источник сообщений.

Источник сообщений выдает сообщение а(t), представляющее собой непрерывный стационарный случайный процесс, мгновенные значения которого в интервале а min

amax распределены равномерно, а мощность сосредоточена в полосе частот от 0 до Fc.

Требуется:

1.

Записать аналитические выражения и построить график одномерной плотности вероятности мгновенных значений сообщения а(t).

2. Найти мат. ожидание и дисперсию сообщения а(t)

3. Построить график случайного процесса и на графике обозначить max значение сигнала, математическое ожидание и среднеквадратичное отклонение.

Вычисления.

1)

=0.0390625

2)

σа= 14.78 В

Дискретизатор.

Передача непрерывного процесса осуществляется дискретными методами. Для этого сообщение а(t) дискретизируется по времени и квантуется по уровню с равномерным шагом. Шаг квантования по уровню Dа= 0,1В.

Требуется:

1. Определить шаг дискретизации по времени (Dt).

2. Определить число уровней квантования (L).

3. Рассчитать среднюю мощность шума квантования.

4. Рассматривая дискретизатор как источник дискретного сообщения с объемом алфавита L, определить его энтропию и производительность (Н, Н), отсчеты, взятые через интервал Dt считать независимыми.

Вычисления.

Т.к. p(a1)= p(a2)=…= p(ai), то

Следовательно

бит/символ

Кодер.

Кодирование осуществляется в два этапа.

Первый этап:

Производится примитивное кодирование каждого уровня квантованного сообщения k– разрядным двоичным кодом.

Второй этап:

К полученной k– разрядной двоичной кодовой комбинации добавляется один проверочный символ, формируемый простым суммированием по модулю 2 всех информационных символов (код (n, n-1) с одной проверкой на четность).

В результате этих преобразований на выходе кодера образуется синхронная двоичная случайная последовательность b(t) (синхронный случайный телеграфный сигнал), состоящая из последовательности биполярных импульсов единичной высоты, причем положительные импульсы в ней соответствуют символу «0», а отрицательные – символу «1» кодовой комбинации.

Требуется:

1. Определить число разрядов кодовой комбинации примитивного кода k, необходимое для кодирования всехL уровней квантованного сообщения.

2. Определить избыточность кода с одной проверкой на четность.

3. Записать двоичную кодовую комбинацию, соответствующую передачеj-го уровня, считая, что при примитивном кодировании на первом этапеj-му уровню ставится в соответствии двоичная кодовая комбинация, представляющая собой запись числаj в двоичной системе счисления. В полученной кодовой комбинации указать информационные и проверочные разряды.

4. Определить число двоичных символов, выдаваемых кодером в единицу времени Vn и длительность двоичного символа T.

Вычисления.

3) j=198. В двоичном виде-

0 1 1 0 0 0 1 1
a8 a7 a6 а5 а4 а3 а2 а1

проверочный разряд а9= а87+ а6+ а5+ а4+ а3+ а2+ а1

В результате получаем кодовую комбинацию: 110001100;

4) Vn= n/∆t=9/

=18·106 бит/с;

T= 1/Vn=5.5. 10-8 с.

Модулятор.

В модуляторе синхронная двоичная случайная последовательность биполярных импульсов b(t) осуществляет модуляцию гармонического переносчика Um= cos(2πft).

Фазовая модуляция (ФМ).

«0» - U0(t) = Umcos2πft;

«1» - U1(t) = -Umcos2πft.

Требуется:

1. Записать аналитическое выражение модулированного сигнала U(t)=φ(b(t)).

2. Изобразить временные диаграммы модулирующего b(t) и модулированного U(t) сигналов, соответствующие передачи j-го уровня сообщения a(t).

3. Привести выражение и начертить график корреляционной функции модулирующего сигнала В(τ).

4. Привести выражение и начертить график спектральной плотности мощности модулирующего сигнала GВ(ω).

5. Определить ширину энергетического спектра модулирующего сигнала FBиз условия FBVk (где α выбирается в пределах от 1 до 3). Отложить полученное значение FB на графике GВ(ω).

6. Привести выражение и построить график энергетического спектра GU(ω) модулированного сигнала. (В случае ЧМ частоты сигналов U0(t) и U1(t) выбирать из условия их ортогональности на интервале Т).

7. Определить ширину энергетического спектра Fu модулированного сигнала и отложить значение Fu на графике Gu(ω).

Вычисления

5.5. 10-8

График спектральной плотности мощности модулирующего сигнала GВ(w):

При увеличении

на один порядок мы наблюдаем следующую картину:

; ∆f=2/T=2/5.5. 10-8 =35·106 Гц ;

Гц;

При ФМ:

U0(t) = cos(2πf0 t)= cos(

U1(t) = cos(2πf0 t+π)=- cos

Гц

Канал связи.

Передача сигнала U(t) осуществляется по каналу с постоянными параметрами и аддитивным флуктуационным шумом n(t) с равномерным энергетическим спектром N0/2 (белый шум).

Сигнал на выходе такого канала можно записать следующем образом:

z(t) = U(t) + n(t)